首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
We give a brief review of SU(2|1) supersymmetric quantum mechanics based on the worldline realizations of the supergroup SU(2|1) in the appropriate N = 4, d = 1 superspaces. The corresponding SU(2|1) models are deformations of standard N = 4, d = 1 models by a mass parameter m.  相似文献   

2.
3.
Computing the holographic entanglement entropy proposed by Ryu-Takayanagi shows that thermal energy near boundary region in AdS3 gain maximum of the temperature. The absolute maxima of temperature is \(T^{Max}_{E}= \frac {4G_{3} \epsilon _{\infty }}{l}\). By simple physical investigations it has become possible to predict a phase transition of first order at critical temperature TcTE. As they predict a tail or root towards which the AdS space ultimately tend, the boundary is considered thermalized. The Phase transitions of this form have received striking theoretical and experimental verifications so far.  相似文献   

4.
With the cosmological constant considered as a thermodynamic variable in the extended phase space, it is natural to study the thermodynamic cycles of the black hole, which is conjectured to be performed using renormalization group flow. We first investigate the thermodynamic cycles of a 4-dimensional asymptotically AdS f(R) black hole. Then we study the thermodynamic cycles of higher dimensional asymptotically AdS f(R) black holes. It is found that when ΔV ? ΔP, the efficiency of isobar-isochore cycles running between high temperature TH and low temperature TC will increase to its maximum value, which is exactly the Carnot cycles’ efficiency both in 4-dimensional and in higher dimensional cases. We speculate that this property is universal for AdS black holes, if there is no phase transition in the thermodynamic cycle. This result may deepen our understanding of the thermodynamics of the AdS black holes.  相似文献   

5.
The problem of Casimir interaction between two δ d -like (d = 1, 2, and 3) sources in Minkowski space is examined on the basis of the ln det formalism. The result obtained for the case of two semitransparent plates (d = 1) coincides with the earlier result based on an alternative approach. The earlier assertion that there is no vacuum interaction between linear (d = 2) sources is disproved. An expression for the Casimir energy for two pointlike (d = 3) sources is obtained.  相似文献   

6.
In this work we investigate corrections of the quintessence regime of the dark energy on the Joule-Thomson (JT) effect of the Reissner Nordström anti de Sitter (RNAdS) black hole. The quintessence dark energy has equation of state as p q = ωρ q in which \(-1<\omega <-\frac {1}{3}\). Our calculations are restricted to ansatz: ω = ??1 (the cosmological constant regime) and \(\omega =-\frac {2}{3}\) (quintessence dark energy). To study the JT expansion of the AdS gas under the constant black hole mass, we calculate inversion temperature T i of the quintessence RNAdS black hole where its cooling phase is changed to heating phase at a particular (inverse) pressure P i . Position of the inverse point {T i , P i } is determined by crossing the inverse curves with the corresponding Gibbons-Hawking temperature on the T-P plan. We determine position of the inverse point versus different numerical values of the mass M and the charge Q of the quintessence AdS RN black hole. The cooling-heating phase transition (JT effect) is happened for M > Q in which the causal singularity is still covered by the horizon. Our calculations show sensitivity of the inverse point {T i , P i } position on the T-P plan to existence of the quintessence dark energy just for large numerical values of the AdS RN black holes charge Q. In other words the quintessence dark energy dose not affect on position of the inverse point when the AdS RN black hole takes on small charges.  相似文献   

7.
We generalize Penrose’s notion of conformal infinity of spacetime, to situations with anisotropic scaling. This is relevant not only for Lifshitz-type anisotropic gravity models, but also in standard general relativity and string theory, for spacetimes exhibiting a natural asymptotic anisotropy. Examples include the Lifshitz and Schrödinger spaces (proposed as AdS/CFT duals of nonrelativistic field theories), warped AdS 3, and the near-horizon extreme Kerr geometry. The anisotropic conformal boundary appears crucial for resolving puzzles of holographic renormalization in such spacetimes.  相似文献   

8.
The results of calculating the electronic structure of semiconductor compounds AIIBVI: 3d(A = Zn; B = S, Se, Te; 3d = Sc-Cu) at a low content of 3d impurities are discussed. The excess charge of an impurity ion with respect to the charge of the zinc ion is determined for the whole series of 3d impurities. It is found that the excess charge gradually varies from +0.6|e| for the scandium impurity to ?0.2|e| for the copper impurity. Photoionization of an impurity ion is simulated by adding a hole or an electron to the impurity center. The added charge is redistributed between the impurity ion and its nearest neighbors, thus decreasing or increasing the total excess charge of the impurity center by a magnitude of ~ 0.2|e|.  相似文献   

9.
Mixing of K 0 and B 0 mesons is studied in the scope of the minimum supersymmetry model (MSSM) with a type II Yukawa sector and explicit violation of CP invariance in the Higgs potential. The mixing parameters Δm LS and ? are calculated in the limit of the low-energy four-fermion approximation with a charged Higgs boson exchange. It is shown that supersymmetric effects are very small for K 0 mesons and may be quite significant for B s 0 and B d 0 mesons, which imposes constraints on the MSSM parameter space.  相似文献   

10.
We propose the finite-size scaling of correlation functions in finite systems near their critical points.At a distance r in a ddimensional finite system of size L,the correlation function can be written as the product of|r|~(-(d-2+η))and a finite-size scaling function of the variables r/L and tL~(1/ν),where t=(T-T_c)/T_c,ηis the critical exponent of correlation function,andνis the critical exponent of correlation length.The correlation function only has a sigificant directional dependence when|r|is compariable to L.We then confirm this finite-size scaling by calculating the correlation functions of the two-dimensional Ising model and the bond percolation in two-dimensional lattices using Monte Carlo simulations.We can use the finite-size scaling of the correlation function to determine the critical point and the critical exponentη.  相似文献   

11.
For an infinitely renormalizable quadratic map \({f_c: z\mapsto z^2+c}\) with the sequence of renormalization periods {k m } and rotation numbers {t m  = p m /q m }, we prove that if \({\limsup k_m^{-1} \log |p_m| >0 }\), then the Mandelbrot set is locally connected at c. We prove also that if \({\limsup |t_{m+1}|^{1/q_m} <1 }\) and q m → ∞, then the Julia set of f c is not locally connected and the Mandelbrot set is locally connected at c provided that all the renormalizations are non-primitive (satellite). This quantifies a construction of A. Douady and J. Hubbard, and weakens a condition proposed by J. Milnor.  相似文献   

12.
Phase transitions (PTs) and frustrations in two-dimensional structures described by a three-vertex antiferromagnetic Potts model on a triangular lattice are investigated by the Monte Carlo method with regard to nearest and next-nearest neighbors with interaction constants J1 and J2, respectively. PTs in these models are analyzed for the ratio r = J2/J1 of next-nearest to nearest exchange interaction constants in the interval |r| = 0–1.0. On the basis of the analysis of the low-temperature entropy, the density of states function of the system, and the fourth-order Binder cumulants, it is shown that a Potts model with interaction constants J1 < 0 and J2 < 0 exhibits a first-order PT in the range of 0 ? r < 0.2, whereas, in the interval 0.2 ? r ? 1.0, frustrations arise in the system. At the same time, for J1 > 0 and J2 < 0, frustrations arise in the range 0.5 < |r| < 1.0, while, in the interval 0 ? |r| ? 1/3, the model exhibits a second-order PT.  相似文献   

13.
Let μ be an arbitrary composition of M + N and let \({\mathfrak{s}}\) be an arbitrary \({0^{M}1^{N}}\)- sequence. A new presentation, depending on \({\mu \rm and \mathfrak{s}}\), of the super Yangian YM|N associated to the general linear Lie superalgebra \({\mathfrak{gl}_{M|N}}\) is obtained.  相似文献   

14.
We investigate propagations of graviton and additional scalar on four-dimensional anti-de Sitter (AdS4) space using f(R) gravity models with external sources. It is shown that there is the van Dam–Veltman–Zakharov (vDVZ) discontinuity in f(R) gravity models because f(R) gravity implies GR with additional scalar. This clearly indicates a difference between general relativity and f(R) gravity.  相似文献   

15.
A scheme for teleporting an arbitrary tripartite entangled state is proposed when three bipartite entangled states (|η〉) with continuous variables are used as quantum channels. Quantum teleportation can be carried out successfully if the receiver adopts an appropriate unitary transformation. The calculation is greatly simplified by virtue of the Schmidt decompositions of both tripartite entangled state |p t ,χ 2,χ 3〉 and |η〉. Any tripartite state which can be expanded in terms of |p t ,χ 2,χ 3〉 may be teleported in this way due to the completeness of |p t ,χ 2,χ 3〉.  相似文献   

16.
The seven and nine dimensional geometries associated with certain classes of supersymmetric AdS 3 and AdS 2 solutions of type IIB and D = 11 supergravity, respectively, have many similarities with Sasaki-Einstein geometry. We further elucidate their properties and also generalise them to higher odd dimensions by introducing a new class of complex geometries in 2n + 2 dimensions, specified by a Riemannian metric, a scalar field and a closed three-form, which admit a particular kind of Killing spinor. In particular, for n ≥ 3, we show that when the geometry in 2n + 2 dimensions is a cone we obtain a class of geometries in 2n + 1 dimensions, specified by a Riemannian metric, a scalar field and a closed two-form, which includes the seven and nine-dimensional geometries mentioned above when n = 3, 4, respectively. We also consider various ansätze for the geometries and construct infinite classes of explicit examples for all n.  相似文献   

17.
Recently, Padmanabhan (arXiv:1206.4916 [hep-th]) discussed that the difference between the number of degrees of freedom on the boundary surface and the number of degrees of freedom in a bulk region causes the accelerated expansion of the universe. The main question arising is: what is the origin of this inequality between the surface degrees of freedom and the bulk degrees of freedom? We answer this question in M-theory. In our model, first M0-branes are compactified on one circle and N D0-branes are created. Then N D0-branes join each other, grow, and form one D5-branes. Next, the D5-brane is compactified on two circles and our universe’s D3-brane, two D1-branes and some extra energies are produced. After that, one of the D1-branes, which is closer to the universe’s brane, gives its energy into it, and this leads to an increase in the difference between the numbers of degrees of freedom and the occurring inflation era. With the disappearance of this D1-brane, the number of degrees of freedom of boundary surface and bulk region become equal and inflation ends. At this stage, extra energies that are produced due to the compactification cause an expansion of the universe and deceleration epoch. Finally, another D1-brane dissolves in our universe’s brane, leads to an inequality between degrees of freedom, and there occurs a new phase of acceleration.  相似文献   

18.
On a fixed Riemann surface (M 0, g 0) with N Euclidean ends and genus g, we show that, under a topological condition, the scattering matrix S V (λ) at frequency λ > 0 for the operator Δ+V determines the potential V if \({V\in C^{1,\alpha}(M_0)\cap e^{-\gamma d(\cdot,z_0)^j}L^\infty(M_0)}\) for all γ > 0 and for some \({j\in\{1,2\}}\) , where d(z, z 0) denotes the distance from z to a fixed point \({z_0\in M_0}\) . The topological condition is given by \({N\geq \max(2g+1,2)}\) for j = 1 and by N ≥ g + 1 if j = 2. In \({\mathbb {R}^2}\) this implies that the operator S V (λ) determines any C 1, α potential V such that \({V(z)=O(e^{-\gamma|z|^2})}\) for all γ > 0.  相似文献   

19.
In this review, we consider an N = 4 supersymmetric SU(3N) gauge theory defined on the Minkowski spacetime. Then we apply an orbifold projection leading to an N = 1 supersymmetric SU(N)3 model, with a truncated particle spectrum. Then, we present the dynamical generation of (twisted) fuzzy spheres as vacuum solutions of the projected field theory, breaking the SU(N)3 spontaneously to a chiral effective theory with unbroken gauge group the trinification group, SU(3)3.  相似文献   

20.
An n-step Pearson-Gamma random walk in ? d starts at the origin and consists of n independent steps with gamma distributed lengths and uniform orientations. The gamma distribution of each step length has a shape parameter q>0. Constrained random walks of n steps in ? d are obtained from the latter walks by imposing that the sum of the step lengths is equal to a fixed value. Simple closed-form expressions were obtained in particular for the distribution of the endpoint of such constrained walks for any dd 0 and any n≥2 when q is either \(q = \frac{d}{2} - 1 \) (d 0=3) or q=d?1 (d 0=2) (Le Caër in J. Stat. Phys. 140:728–751, 2010). When the total walk length is chosen, without loss of generality, to be equal to 1, then the constrained step lengths have a Dirichlet distribution whose parameters are all equal to q and the associated walk is thus named a Pearson-Dirichlet random walk. The density of the endpoint position of a n-step planar walk of this type (n≥2), with q=d=2, was shown recently to be a weighted mixture of 1+floor(n/2) endpoint densities of planar Pearson-Dirichlet walks with q=1 (Beghin and Orsingher in Stochastics 82:201–229, 2010). The previous result is generalized to any walk space dimension and any number of steps n≥2 when the parameter of the Pearson-Dirichlet random walk is q=d>1. We rely on the connection between an unconstrained random walk and a constrained one, which have both the same n and the same q=d, to obtain a closed-form expression of the endpoint density. The latter is a weighted mixture of 1+floor(n/2) densities with simple forms, equivalently expressed as a product of a power and a Gauss hypergeometric function. The weights are products of factors which depends both on d and n and Bessel numbers independent of d.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号