首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Underpotential deposition of Cu onto an Se-modified smooth polycrystalline Pt electrode in an acidic CuSO4 solution was investigated using a cyclic voltammetry. It was obtained that the specific voltammetric pattern of Cu UPD observed for a clean Pt electrode disappeared and a new current peak at potentials much closer to bulk Cu deposition was formed. This feature of a cyclic voltammogram is similar to that observed earlier for clean Pt electrode in acidic CuSO4 solutions containing selenite and also to that described for S-modified Pt electrode in an additive-free CuSO4 solution. The reasons for the difference in the voltammetric behavior of bare Pt and Se-modified Pt in the potential range characteristic of Cu UPD were considered. A model of Cu deposition taking place onto the free Pt sites at more positive potentials and onto the Se-covered ones at less positive potentials was discussed with closer scrutiny.  相似文献   

2.
采用循环伏安法(CV)和原位椭圆偏振法(SE)研究铅在铜电极上的电沉积行为。 原位椭圆偏振参数Ψ和Δ值的变化率在CV图峰电位处同时出现极值。 通过建立单层膜模型描述“电极-溶液”界面的结构并对椭圆偏振光谱数据进行拟合得到铅沉积层厚度随电位的变化规律。 拟合结果显示,铅在铜电极上的电沉积有3个不同的沉积速率,-0.20~-0.35 V之间沉积速率为0.003 nm/mV,-0.35~-0.48 V之间沉积速率为0.025 nm/mV,-0.48~-0.60 V之间沉积速率为0.116 nm/mV,由此表明铅的电沉积分为3个不同阶段:欠电位沉积阶段、欠电位沉积向本体沉积的过渡阶段和本体沉积阶段。  相似文献   

3.
One problem associated with using bare solid metal electrodes, such as gold and platinum, in stripping analysis to determine heavy metal ions such as lead and copper ions in dilute solutions is that underpotential deposition (UPD) gives multiple stripping peaks in the analysis of mixtures. These peaks are often overlapped and cannot be conveniently used for analytical purposes. Bifunctional alkylthiols, such as 3-mercaptopropionic acid, with an ionizable group on the other terminal end of the thiol can form self-assembled monolayers (SAMs) on the surface of the gold electrode. It is shown that such an SAM-modified gold electrode minimizes the UPD effects for the stripping analysis of lead and copper. The anodic peak potential shifts and the peak shape changes, indicating that the SAM changes the deposition and stripping steps of these heavy metal ions. Thus, the sensitivity levels for both single species and mixtures can be significantly improved for the conventional solid electrodes. The mechanism of the deposition reaction at the SAM-modified gold electrodes is discussed. Received: 29 May 1997 / Accepted: 24 June 1997  相似文献   

4.
The underpotential deposition (UPD) of copper on partially oxidized rhodium electrodes was studied in acid medium using potentiodynamic techniques. The process was analyzed as a function of the potential and time of deposition. The potentiodynamic I-E patterns for the oxidative dissolution of Cu provide evidence for the existence of a chemical reaction between Cu and oxygen existing on the electrode surface. Redistribution of the active sites is also possible when appreciable quantities of oxidized species are simultaneously reduced by the UPD process. The partially oxidized rhodium electrodes were prepared by cyclic voltammetry and anodic polarization. The later method provided the most oxidized surfaces, but, even in this case, the degree of oxygen surface coverage was lower than that corresponding to a monolayer. Received: 11 July 1997 / Accepted: 10 February 1998  相似文献   

5.
Copper underpotential deposition (UPD) on a gold surface is investigated by cyclic voltammetry coupled with in situ cyclic strain to understand the strain-modulated electrodeposition. Our work emphasizes quantification of an electrocapillary coupling coefficient ς, which relates the response of Cu electrodeposition potential, E, to applied strain, ε. The different responses to the strain are observed at two Cu UPD stages. The data indicate that tensile strain could enhance the formation of a Cu monolayer on the Au surface. The typical electrodeposition process could be modulated by an external mechanical strain.  相似文献   

6.
Cu + Au alloy particles electrodeposited on an amorphous carbon electrode at the underpotential region of Cu in both perchloric acid and sulfuric acid solutions were investigated by means of transmission electron microscopy. The fraction of Cu in the Cu + Au alloy particles grown in both acid solutions with a concentration of 1 mM Au ion increased while the underpotential deposition (UPD) potential was decreased. However, it was independent of the concentration of Cu ion in solution. It is inferred that the composition of the Cu + Au alloy particles is dependent on the UPD potential. The fraction of Cu in the Cu + Au alloy particles grown at around the reversible Nernst potential of Cu in 0.1 mM HAuCl4 + 50 mM Cu(ClO4)2 containing perchloric acid solution was 505. This result suggests a layer-by-layer formation of the Cu + Au alloy particles. The fraction of Cu in the Cu + Au alloy particles formed in the presence of sulfate was lower than that in the perchloric acid solution as the UPD potential and the concentration of Cu ion were the same. This is attributed to an influence of coadsorbed sulfate ions.  相似文献   

7.
本文利用欠电位沉积亚单层的Cu及Pt置换取代Cu的方法, 制备了具有不同表面元素组成的Pd/Pt二元合金电极(用Pd/Ptx表示, x指欠电位沉积Cu-Pt置换取代Cu过程的次数),并对其表面元素组成、氧还原性能进行了表征. 在控制欠电位沉积Cu的下限电位恒定(0.34 V)的前提下, 表面Pt/Pd的元素组成比通过重复欠电位沉积Cu及Pt置换取代Cu的次数(1~5次)来可控地调变. 光电子能谱(XPS) 以及红外光谱实验表明,Pd/Ptx电极表层区的Pt:Pd元素组成比随着Pt沉积次数增加而增加, 对Pd/Pt4电极, 在电极表层区约2~3 nm内的Pt/Pd的原子比大约是1:4,而最表层裸露Pd原子的比例仍在20%以上。循环伏安结果显示, 随着Pt沉积次数的增加(1-5次), Pd/Ptx电极表面越不易被氧化。氧还原测试结果显示随着Pt沉积次数的增加(1~4次), Pd/Ptx二元金属电极的氧还原活性依次增加, 经过第3次沉积后其氧还原活性已优于纯Pt,而经4次以上沉积,其氧还原活性基本不变。在其它反应条件相同条件的前提下, Pd/Pt4电极上氧还原的半波电位与纯Pt相比右移约25 mV。结合本文与文献的实验结果,我们初步认为Pd/Ptx二元金属体系氧还原性能改善主要源自表层Pd原子导致其邻近的Pt原子上含氧物种吸附能的降低.  相似文献   

8.
A novel voltammetry with a modified gold electrode for the direct determination of copper in environmental samples, without any pretreatment, is proposed in this paper. A porous disorganized monolayer was formed on the surface of the gold electrode by the self-assembly of mercaptoacetic acid (MAA), which could selectively permeate small molecules. Subtractive square wave anodic stripping voltammetry (SASV) was applied to determine copper, in which the underpotential deposition (UPD) of copper was used as the deposition step. The linear range was from 8 x 10(-7) to 1 x l0(-5) mol l(-1) by the modified electrode in the presence of human serum albumin, and the determination was not interfered with common metal ions. Copper in a real environmental sample was successfully detected.  相似文献   

9.
同种材料而表面结构不同的电极往往有完全不同的电化学性能.使用在原子水平上表面结构明确的单晶电极不仅有助于对电极表面吸脱附过程、电场作用下表面结构重组、双电层微观结构、分子水平上的反应机理等基础理论进行深入研究,且对高选择性、高效电催化剂的研制也有指导意义.单晶电化学研究的基础就是制备定向不同的单晶电极.本文建立了金属单晶电极制备方法,并报道了Cu2+在Pt单晶电极上UPD(欠电位沉积)过程的研究结果.  相似文献   

10.
Au/Pt core shell nanoparticles (NPs) have been prepared via a layer‐by‐layer growth of Pt layers on Au NPs using underpotential deposition (UPD) redox replacement technique. A single UPD Cu monolayer replacement with Pt(II) yielded a uniform Pt film on Au NPs, and the shell thickness can be tuned by controlling the number of UPD redox replacement cycles. Oxygen reduction reaction (ORR) in air‐saturated 0.1 M H2SO4 was used to investigate the electrocatalytic behavior of the as‐prepared core shell NPs. Cyclic voltammograms of ORR show that the peak potentials shift positively from 0.32 V to 0.48 V with the number of Pt layers increasing from one to five, suggesting the electrocatalytic activity increases with increasing the thickness of Pt shell. The increase in electrocatalytic activity may originate mostly from the large decrease of electronic influence of Au cores on surface Pt atoms. Rotating ring‐disk electrode voltammetry and rotating disk electrode voltammetry demonstrate that ORR is mainly a four‐electron reduction on the as‐prepared modified electrode with 5 Pt layers and first charge transfer is the rate‐determining step.  相似文献   

11.
用密度泛函计算和循环伏安法研究了锰在金和铅表面的欠电位沉积(UPD)行为. 理论计算, 假设生成紧密的二维相(2D)欠电位沉积层, 用基于密度泛函理论的DMol3软件计算在金与铅表面生成2D相锰层的欠电位偏移值∆fE2DMe, 证明锰在金表面可发生欠电位沉积, 而在铅表面不能发生欠电位沉积. 循环伏安实验结果与理论计算不一致: 金电极析氢电位高不利于研究锰的还原沉积反应, 没有发现锰的欠电位沉积现象; 铅电极在MnCl2溶液中有锰的欠电位沉积现象. 这种理论计算与电化学实验结果的差异, 主要是因为理论计算没有考虑溶剂与阴离子特性吸附作用的影响, 理论计算模型是电化学实验体系的一种理想模型.  相似文献   

12.
Confined in a molecular corral : A supramolecular network changes the mechanism by which underpotential deposition (UPD) of copper proceeds on a gold electrode modified by a self‐assembled monolayer (SAM). Lateral diffusion of Cu adatoms is suppressed between adjacent cells of a network/SAM hybrid structure. Instead, UPD occurs by direct deposition into the SAM filled pores of the network, where the Cu adatoms are confined.

  相似文献   


13.
应用循环伏安法和现场扫描隧道显微镜研究了在HClO4和H2SO4两种溶液中Sb于Cu(111)和Cu(100)电极上的欠电位沉积.结果表明,不同的表面原子排列和强吸附阴离子的存在将明显影响Sb的欠电位沉积行为.在结构较为开放的Cu(100)表面,Sb形成的欠电位沉积层结构也较为开放,并且伴随着表面合金的形成;而在密堆积的Cu(111)表面上,Sb形成了致密的单层结构.又当Cu(111)表面存在强吸附的SO42-时,Sb原子首先在SO42-吸附层与Cu表面交接的新台阶处成核,随后通过取代SO42-向上一层晶面发展,表现出独特的成核—生长行为;而在弱吸附的HClO4溶液中,Sb的欠电位沉积系以在晶面上随机形成一些单原子层高度的Sb岛为特征.在Cu(100)表面,通过SO42-的诱导共吸附,欠电位沉积的Sb原子形成了开放性更大的(4×4)结构,不同于在HClO4溶液中所形成的(22×22)R45°结构.  相似文献   

14.
The crystal habit of fcc metal particles formed on an amorphous carbon film electrode in solution at different electrode potentials is discussed. The fcc metal particles have different crystallographic habits depending on applied electrode potential; that is, icosahedral and/or decahedral particles are formed at lower potentials, and fcc single-crystalline or polycrystalline particles at higher potentials. It was found that decahedra and icosahedra of Cu-Au alloy particles are formed in the potential region of underpotential deposition (UPD) of Cu at which only fcc Au single-crystalline particles and Au polycrystalline particles appear. This is attributed to the charge transfer from the UPD Cu ions to the Au overlayer of Cu-Au alloy particles. The formation of decahedral and icosahedral Cu-Au alloy particles depends on the composition of the Cu-Au alloy. On the basis of these results it was deduced that the contraction of the surface lattice of the growing particles is responsible for the formation of icosahedral and decahedral particles. Received: 25 February 1997 / Accepted: 21 April 1997  相似文献   

15.
The electrodeposition of copper on a polycrystalline gold electrode and on Au(hkl) single crystals was investigated in a deep eutectic solvent (DES). The DES employed consisted of a mixture of choline chloride and urea (1:2). The Au(hkl)/DES interface was studied using cyclic voltammetry in the capacitive region. The blank voltammograms showed characteristic features, not previously reported, that demonstrate the surface sensitivity of this solvent. Copper electrodeposition was then studied and it was found that this takes place through the formation of an underpotential deposition (UPD) adlayer, demonstrating the surface sensitivity of this process. Voltammetric profiles showed similarities with those obtained in aqueous solutions containing chloride, suggesting that the copper UPD in this DES is strongly influenced by the presence of chloride.  相似文献   

16.
The simultaneous determination of Zn and Cu by anodic stripping voltammetry (ASV) is prone to errors due to the formation of Cu‐Zn intermetallic compounds. The main aim of this work was to study the possibility of simultaneous determination of Zn and Cu, together with Hg and Pb, using a mercury‐free solid gold microwire electrode. The multi‐element detection was carried out by differential pulse anodic stripping voltammetry (DPASV), in a chloride medium (0.5 M NaCl) under moderate acid conditions (HCl 1.0 mM) in the presence of oxygen, where the gold microwire electrode was used as stationary or vibrating working electrode during the deposition step. Under these conditions, no formation of Cu‐Zn intermetallic compounds were found for concentrations usually determined in surface waters. In addition, quantification of Zn and Cu, together with Hg and Pb, can be performed in a wide range of concentrations (about two orders of magnitude) using the same sample, in a very short period of time. The detection limits for Cu, Hg, Pb and Zn, using a vibrating electrode and 30 s of deposition time, were 0.2 µg L?1 for Hg, 0.3 µg L?1 for Pb and 0.4 µg L?1 for Zn and Cu, respectively. The proposed DPASV methods were successfully applied to the determination of Cu, Hg, Pb, and Zn in a certified reference fresh water, river, tap and coastal sea waters. These results proved the applicability and versatility of the proposed methods for the analysis of different water matrices and showed that a gold microwire electrode is a suitable choice to determine simultaneously Zn and Cu.  相似文献   

17.
Cyclic voltammetry and differential pulse voltammetry were used to investigate the electrochemical behavior of ascorbic acid (AA) on palladium coated nanoporous gold film (PdNPGF) electrode. The deposition of palladium was done through oxidation of copper UPD layer by palladium ions. This low Pd‐loading electrode behaved as the nanostructured Pd for electrocatalytic reaction. The PdNPGF electrode exhibits excellent electrocatalytic behavior by enhancing the AA oxidation peak current due to synergistic influence of the Pd film and NPGF. The kinetic parameters such as electron transfer coefficient, α, was 0.47 and the voltammetric responses of the PdNPGF electrode were linear against concentration of AA in the ranges of 2.50–33.75 mM and 0.10–0.50 mM with CV and DPV respectively.  相似文献   

18.
The changes in surface stress of the evaporated gold electrode (mainly oriented to the (111) plane) during underpotential deposition (UPD) of copper in 0.1 M sulfuric acid medium or 0.1 M perchloric acid medium with and without sulfate or chloride were measured using a bending beam method. The surface stress maximum of gold electrode appeared during Cu-UPD. The co-adsorption of (bi)sulfate or chloride ions with copper atoms induced the compressive surface stress to promote the Cu-UPD. The factors influencing the surface stress or surface elastic strain were discussed in relation to the Cu-UPD structure. Dedicated to Professor Su-Il Pyun on the occasion of his 65th birthday.  相似文献   

19.
We report about a new kind of directly heated gold electrode. All electrodes including a directly heated gold loop electrode, a Ag pseudo reference, and a carbon counter electrode have been screen-printed on a ceramic alumina substrate. Thermal behaviour was studied by potentiometry using either an external or the integrated reference electrode. Stripping voltammetric copper signals were greatly improved at elevated deposition temperature. Secondary ion mass spectrometric studies (ToF-SIMS) revealed that different negative ionic species of copper complexes can be found on the gold electrode surface as a result of ion bombardment during SIMS analysis like Cu?, CuCl? and CuCl2 ?. SIMS surface imaging using a fine focussed ion beam over the surface allowed us to obtain ion images (chemical maps) of the analyzed sample. SIMS depth profile analysis of the gold loop electrode was performed after copper deposition at room temperature (23 °C) and at 60 °C. CuCl2 ? ion was used for the depth profile studies as it has shown the highest intensity among other observed species. Surface spectroscopic analysis, surface imaging and depth profile analysis have shown that the amount of deposited copper species on the gold loop electrode was increased upon increasing electrode temperature during the deposition step. Therefore, the presence of chloride in the solution will hinder underpotential deposition of Cu(0) and lead to badly defined and resolved stripping peaks.  相似文献   

20.
铅于旋转银盘电极上欠电位沉积的计时库仑法研究   总被引:4,自引:0,他引:4  
用计时库仑法研究了Pb2+于旋转Ag盘电极(Ag-RDE)上的欠电位沉积(UPD)性质。实验证明,支持电解质(0.01mol/L HNO3+0.01 mol/L NaCI)中Cl-离子的存在有利于取得稳态条件下UPD Pb的电量值。其氧化过程电量(Qa),代表Pb2+吸附单层被定量转化为UPD Pb单层的量,Qa的平均值为393.3μC/cm2,相应于2×10-9mol/cm2Pb2+表面复盖量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号