共查询到19条相似文献,搜索用时 78 毫秒
1.
可见/近红外光谱技术在液态食品检测中的应用研究进展 总被引:5,自引:0,他引:5
可见/近红外光谱作为一种快速、无损的新型检测技术,在农产品与食品品质检测领域获得越来越广泛的应用。日本和欧美很多国家在近红外光谱对农产品与食品品质检测方面已经取得了很大的进展,国内在这一领域的研究虽有一定的成果,但与国外相比仍有一定的差距,有待加强。文章从酒类、奶制品、果汁、食用油等方面综述了近几年国内外可见/近红外光谱技术在液态食品品质检测中的最新应用研究进展,分析了可见/近红外光谱技术应用于液态食品品质检测的种种优势,思考了应用中存在的一些问题并尝试提出了相应的解决方法,最后对进一步的研究提出了展望。 相似文献
2.
近红外光谱通用模型在农产品及食品检测中的研究进展 总被引:2,自引:0,他引:2
我国人口基数大,农产品和食品的需求量多。农产品和食品的质量与安全与人们的日常生活息息相关。如何实现使用无损、快速、环境友好型、高通量的检测方法对农产品和食品的品质进行检测,是当代社会的发展需要。传统的检测分析方法存在着耗时耗力、检测的样品不能再次出售、产生次品漏检的现象等缺点。近红外光谱分析技术作为一种快速无损的检测手段,逐渐被一些学者以及相关行业人员所重视。然而,近红外光谱分析方法大多数只针对于单一物料建立数学模型。对于数量庞大且种类众多的农产品和食品而言,如不同地域、不同年份、不同温度、不同加工方法、不同成分组成甚至是不同品种,这种相对传统的近红外分析方法无疑会增加建模的工作量。随着计算机技术、光谱仪硬件、化学计量学以及互联网技术的发展,相关学者已经开始着手于近红外光谱通用模型的研究与开发来解决这一问题,即建立一个近红外通用模型,能够对多种物料的同一指标或多种指标进行检测。相比于传统的近红外光谱模型,通用模型具有建模成本低、工作量小等优点,特别使近红外光谱技术在农产品和食品领域中应用以及推广方面具有重要的意义。针对近红外光谱通用模型在农产品和食品检测中的研究进行综述,通过比较传统模... 相似文献
3.
近红外光谱分析技术在水果品质无损检测上的应用 总被引:1,自引:0,他引:1
近红外光谱分析技术具有快速、非破坏性、低成本及同时测定多种成分等特点,在很多领域得到广泛应用。本文简介了近红外光谱技术的检测原理,指出其检测优点和不足。综述了国内外将近红外光谱技术应用于水果品质无损检测方面的研究进展,并对利用近红外光谱技术进行水果品质无损检测的研究前景进行了展望。 相似文献
4.
近红外光谱分析技术在蔬菜品质无损检测中的应用研究进展 总被引:3,自引:3,他引:3
蔬菜的无损检测技术包括利用其电学特性、光学特性、声波振动特性以及核磁共振技术、机器视觉技术、电子鼻技术和撞击技术等,其中应用最广泛、最成功的检测方法是光学方法。近红外光谱分析技术因分析速度快、效率高、成本低、重现性好,无需样品备制,无污染等特点,已成为一种快速、无损的现代分析技术,在很多领域得到广泛应用。文章介绍了国内外运用近红外光谱分析技术进行蔬菜品质无损检测的研究情况,分析了该技术应用于蔬菜品质检测时尚存在的问题和今后的研究方向。提出因蔬菜多样性和易腐变性等特点,需要加快研制近红外自动分析设备,以提高蔬菜品质检测的速度。指出结合核磁共振技术、图像技术等进行蔬菜品质的无损检测是未来发展的趋势。 相似文献
5.
农产品外部品质无损检测中高光谱成像技术的应用研究进展 总被引:18,自引:0,他引:18
高光谱成像技术是一种传统图像及光谱的融合技术,可以同时获取研究对象的空间及光谱信息.由于图像数据能反映农产品的外部特征、表面缺陷及污斑情况,而光谱数据又可以对物体内部物理结构及化学成分进行分析.因此,近几年在农产品品质无损检测中引起越来越多的关注,成为一个研究热点.为了跟踪国内外的最新研究成果,对高光谱反射及荧光成像技术应用于农产品(水果、蔬菜、肉类、谷物等)的外部品质检测进行了分类综述,以期为高光谱技术在农业方面更广阔的应用提供参考. 相似文献
6.
农产品及食品的品质与安全一直以来都是人们关注的焦点,不仅关系着人们的身体健康,而且关系着社会稳定甚至国家安全.由于农产品及食品的品质不合格引发的安全事件备受社会各界的广泛关注.对农产品及食品的品质的监管长久以来都是分析检测领域的重点和难点.我国人口众多,对农产品和食品的消费量非常大.面对如此大量农产品及食品品质的无损快... 相似文献
7.
近红外光谱技术在水产品检测中的应用研究进展 总被引:1,自引:0,他引:1
水产品富含水分、蛋白质、不饱和脂肪酸与游离氨基酸等,是消费者喜爱的食品之一。然而,其在贮藏过程中由于温度波动或操作不当等因素会引起品质下降,引发一系列的食品安全问题。近红外光谱技术是一种利用物质对光的吸收、散射、反射和透射等特性来确定其成分含量的检测技术。该技术作为食品分析方法之一,在食品领域中应用广泛,可进行从气体到液体,从匀浆到粉末,从固体材料到生物组织等样品的快速精准与定性定量分析,具有快速无损,安全高效,多组分同时测定等特点。主要对常用无损检测技术的特点进行比较分析,对近红外光谱技术的主要工作原理予以说明,综述了该技术在水产品鲜度评价、掺伪分析、质量评估与货架期预测等方面的应用实例与最新研究进展,目前存在的主要问题,提出该技术应在进一步提升水产品检测精度的前提下,通过与各类理化指标的相关性分析、多种检测技术相融合等法来实现全面评价水产品品质的最终目标,以使其在水产品快速检测过程中得到更加广泛的应用。 相似文献
8.
聚合物材料制品的性能与成型加工过程有着密切的联系,因此在线监控加工过程中材料的状态至关重要。根据在线监控实时反馈的数据,能够实现加工工艺参数的及时调整,确保生产过程的稳定性,从而保证产品质量、减少能源浪费、提高生产效益。近红外光谱在线测量技术是一种成本低、实时性强,可以准确定量分析的技术,已在很多生产领域得到了应用,然而在聚合物加工领域仍处于研究阶段。本文从测量聚合物中的组分含量、熔融指数、熔体密度、填充物的分散性四个方面概述了近红外光谱在线测量技术在聚合物加工中的应用研究进展,指出了近红外光谱在线测量技术尚存在的问题,给出了几点建议,最后对近红外光谱在线测量技术未来的发展进行了展望。指出在未来几十年里,随着光纤光谱仪器科学、计算机科学以及化学计量学方法的发展,近红外光谱在线测量技术在原始数据稳定性、预处理方法、建模方法及模型的稳健性与准确性上将会有长足的进步,将会在更多的领域推广应用,产生巨大的经济与环保价值。 相似文献
9.
中红外光谱以及近红外光谱在现代分析化学中有重要的地位,是人类认识物质结构、功能、成分以及含量的重要途径。小杂粮泛指生育期短、种植面积少、种植地区和种植方法特殊,有特种用途的多种粮豆,其特点是小、少、特、杂。小杂粮营养丰富,既是传统口粮,又是保健食品资源。随着人民生活水平的提高和膳食结构的改善,小杂粮作为药食同源的新型食品资源,在现代绿色保健食品中占有重要地位。对小杂粮进行品质检测可为小杂粮生物活性物质研究、品质分级、小杂粮育种、产地溯源与真伪鉴别等方面提供可靠的数据支撑。按照麦类小杂粮及豆类小杂粮分类,对国内近30年来小杂粮品质检测有关文献加以综述。研究表明,麦类小杂粮品质检测文献更多,约占文献数量的2/3左右,且以近红外光谱技术应用居多;豆类小杂粮品质检测文献相对较少,约占文献数量的1/3左右,且以中红外光谱技术应用居多。中红外光谱、近红外光谱在小杂粮品质检测分析方面有诸多重要应用。其中,中红外光谱更多应用于小杂粮中活性物质以及小杂粮加工过程的表征,而近红外光谱则更多应用于小杂粮中粗蛋白、粗脂肪、水分等主要品质指标的定量分析检测,可为小杂粮品质监测、科学育种提供高效的数据来源。近年来,随着化学计量学的发展和计算机技术的进步,近红外光谱不再局限于小杂粮品质指标定量分析,而且还被应用于小杂粮产地溯源等领域,亦取得了良好的效果。最后对中红外光谱、近红外光谱在小杂粮品质无损分析检测方面做出了展望。 相似文献
10.
综述了近红外分析技术在农作物生长及食品加工处理过程中氨基酸检测的应用情况,及其研究进展。对近红外分析食品氨基酸应用中涉及的化学值HPLC检测以及化学计量学方法进行总结,对相关原始文献中的数据、资料和主要观点进行整理和归纳。对氨基酸的HPLC、化学计量学分析方法及其在农作物品质监测、茶叶中氨基酸和茶多酚含量的同时测定、饲料品质鉴定、奶酪火腿肉制品中氨基酸及其他化学成分含量的测定情况进行了综述,分析了方法的优缺点并对近红外分析技术在食品氨基酸检测中应用进行了展望。近红外光谱在氨基酸检测中应用的发展需基于氨基酸高效液相色谱检测的化学值来建立相应的模型,模型传递的问题是目前制约其大范围推广的主要原因。在线分析可以监测从原料到产品的整个反应变化过程,满足食品从生产到销售等领域中品质实时监控的需求,将是今后重要的发展方向。 相似文献
11.
基于近红外技术快速测定不同鲜肉中脂肪含量 总被引:4,自引:0,他引:4
随着畜禽肉和肉制品食用量的迅速增长,人们对肉品质量提出了更高的要求;对于肉制品,消费者最为关心是肉品质量, 当前中国对肉品品质在线检测方面的研究和应用则相对较少,尚无针对肉品品质在线无损检测开发的设备。也没能真正投入到肉品的生产加工过程。研究不同肉品脂肪的近红外快速检测模型。并采用标准化学方法进行差异分析。通过近红外技术对猪肉、牛肉、羊肉进行扫描,采用国标法(索氏提取法)对鲜肉脂肪含量进行化学值的测定,以PLS(偏最小二乘法)作为建模方法,并通过不同的光谱预处理手段分别建立了猪牛羊肉的近红外光谱参数与样品的脂肪含量之间的对应关系模型。结果表明,对于猪肉来说,选择4 260~6 014 cm-1波段+一阶导+Norris所建的模型效果最好,其校正相关系数和预测相关系数分别为0.955 6和0.961 6;对于牛肉来说,选择5 226~7 343 cm-1波段+一阶导+S-G所建的模型效果最好, 其校正相关系数和预测相关系数分别为0.923 5和0.942 7;对于羊肉来说,选择5 207~7 362 cm-1波段+一阶导+Norris所建的模型效果最好,其校正相关系数和预测相关系数分别为0.915 7和0.939 6;对于鲜肉来说,选选用波段为5 156~6 065 cm-1+二阶导+S-G所建模型效果最好,其校正相关系数和预测相关系数分别为0.916 3和0.919 4。以上所有模型的校正相关系数均大于0.91,模型都具有较高的精密度,符合不同肉制品在实际生产的需求,具有分析速度快、检测成本低、分辨率高、无损的优点。 相似文献
12.
基于近红外光谱的腐乳白坯硬度检测研究 总被引:6,自引:0,他引:6
考察了硬度与腐乳白坯中水分含量和蛋白质含量的相关关系,探讨了利用近红外光谱技术检测白坯硬度的可行性。通过水分以及蛋白质的相关吸收峰建立预测白坯硬度的数学模型;在建模过程中重点讨论了多元散射校正(MSC)、一阶求导和波段选择等优化处理对建模的影响,利用偏最小二乘法得到的最优模型的建模相关系数r=0.935,建模标准差RMSEC=0.019 3,预测标准差RMSEP=0.023 6,其分级正确率达到94.72%;利用主成分分析法结合判别分析法建立的定性判别模型,分级正确率也达到了90.12%。上述分级结果均好于感观评价的方法,表明近红外技术可以实现白坯硬度的快速无损检测。 相似文献
13.
近红外光谱技术的花生产毒霉菌侵染快速检测 总被引:1,自引:0,他引:1
为了能够快速、无损地评价花生的质量,确保储藏与食用安全,开发了一种基于近红外光谱技术的花生产毒霉菌污染程度的定性定量分析方法。首先对经过Co-60强辐射杀菌后的新鲜花生样品分别接种谷物中五种常见产毒霉菌(黄曲霉3.17、黄曲霉3.3950、寄生曲霉3.395、寄生曲霉3.0124、赭曲霉3.6486),并于适宜条件下(26 ℃、RH 80%)储藏9 d。其次,利用近红外光谱仪采集了不同时期花生样品在12 000~4 000 cm-1波段范围内的漫反射光谱,运用主成分分析(PCA)、判别分析(DA)和偏最小二乘回归(PLSR)建立了分析模型。结果显示,接种不同霉菌的样品随着储藏时间的延长均能得到有效区分,DA模型对储藏0,3,6与9 d花生的感染单一霉菌和多种霉菌的总体判别正确率分别达到100%和99.17%,PLSR模型对样品中的菌落总数的预测结果为:有效决定系数(R2P)为0.874 1、交互验证均方根误差(RMSECV)为0.276 Log CFU·g-1,剩余预测偏差(RPD)为1.92。结果表明,近红外光谱技术可以作为一种可靠的分析方法对花生受霉菌侵染的状况进行快速分析,从而确保贮藏期间花生的质量安全。 相似文献
14.
SHEN Fei WEI Ying-qi ZHANG Bin SHAO Xiao-long SONG Wei YANG Hui-ping 《光谱学与光谱分析》2018,38(12):3748-3752
稻谷是我国主要储粮品种。为快速、准确鉴定稻谷霉变状态,建立了一种基于近红外光谱的稻谷霉菌污染定性、定量分析方法。首先,将四种谷物中常见有害霉菌(黄曲霉3.17、黄曲霉3.3950、寄生曲霉3.3950、灰绿曲霉3.0100)分别接种在灭菌稻谷样品上。其次,将接种霉菌样品进行人工模拟储藏(28 ℃、RH 80%),并采集不同储藏时间(0,2,4,7和10 d)稻谷的近红外漫反射光谱信号。最后,利用主成分分析(PCA)、判别分析(DA)和偏最小二乘回归(PLSR)方法建立稻谷霉菌污染的快速分析模型。结果显示,近红外光谱可有效区分感染不同霉菌的稻谷样品,平均判别正确率达87.5%。稻谷霉变随储藏时间逐渐加深,近红外光谱对感染单一霉菌稻谷样品霉变状态的判别正确率达92.5%,多种霉菌的判别正确率达87.5%。稻谷中的菌落总数的PLSR模型定量结果为:有效决定系数(R2P)为0.882 3、验证均方根误差(RMSEP)为0.339 Lg CFU·g-1,相对标准偏差(RPD)为2.93。结果表明,近红外光谱法可以作为一种快速、无损的分析方法来判定稻谷霉菌侵染状况,确保稻谷储运安全。 相似文献
15.
小波变换在近红外光谱分析中的应用进展 总被引:13,自引:1,他引:13
小波变换(WT)具有很好的时频分离特征,信息处理能力强,已广泛用于分析化学领域;本文就小波变换在近红外光谱领域的应用进行简述。小波变换用于近红外预处理,提取有用信息,消除背景干扰,可以提高近红外的分析精度和模型稳健性;用于数据压缩可以减少数据库存储空间,提高建模速度;小波系数用于模型传递,具有传递速度快,稳健性强,所需标样少等特点;小波变换可以与神经网络、遗传算法等结合,在近红外分析领域呈现出良好的发展前景。 相似文献
16.
提出了一种基于近红外(NIR)光谱的黄酮类提取物抗氧化活性计算预测新方法。采用1,1-二苯-2-苦肼基(DPPH)法测定28种黄酮类中药材提取物的抗氧化活性,并在4 000~10 000 cm-1范围扫描样品的红外光谱,采用偏最小二乘(PLS)算法建立了黄酮类组分近红外光谱与抗氧化活性之间的校正模型。建模过程中,以交叉验证相关系数(R2),交叉验证误差均方根(RMSECV)为指标,确定了用于建模的最优近红外波段和光谱预处理方法。校正模型的RSECV为9.50%,R2为 0.901 7,预测误差均方根(RMSEP)为14.8%。该方法快速无损、操作简便,可用于中药及天然产物提取物抗氧化活性的快速评价。 相似文献
17.
近红外光谱技术(NIRS)分析样品时以其方便、快捷和准确等诸多优点在动物营养研究中得到了广泛的应用。用NIRS技术预测家畜日粮中有机物消化率时所产生的标准偏差(SECV)在1.6%~2.8%之间,而预测干物质的消化率时所产生的SECV在1.6%~3.5%之间。NIRS能够准确地预测饲料中的化学成分和生物学组分以及反刍家畜十二指肠微生物蛋白的流量,但对于预测饲料在瘤胃降解率的动态特性时与实际相差很大。NIRS技术预测舍饲家畜采食量与体内法得到的结果相似,但在预测放牧家畜采食量时其预测误差为14%左右。上述结果表明,NIRS技术在预测反刍家畜消化代谢、日粮营养评价、采食量等方面已取得了很大的进展,并在反刍动物营养研究领域中有着广阔的应用空间。 相似文献
18.
近红外光谱分析在工业过程故障检测方面具有独特的优势,是一种准确且高效的方法。结合互信息熵和传统的主成分分析,对近红外光谱特征信息进行提取,通过构建过程的模式来刻画工业过程的运行状态。利用近红外光谱数据,从有机分子含氢基团振动信息中获取工业系统的过程模式,从微观分子层面探索提高工业过程故障检测准确率的有效方法,结合贝叶斯统计学习技术,提出了基于近红外光谱数据的工业过程故障检测技术。针对近红外光谱信息量丰富,谱带较宽,特征性不强的特点,首先对工业过程不同运行状态下的近红外光谱吸光度数据进行一阶导数预处理,采用主成分分析法(principal component analysis,PCA)压缩光谱数据量,扩大不同运行状态下光谱特征信息的差异性,提取光谱的内部特征信息。然后采用互信息熵(mutual information entropy,MIE)作为光谱特征信息相关性度量函数,基于最小冗余最大相关算法进一步减少光谱特征信息间的冗余并最大化光谱特征信息与类别的相关性,弥补了PCA无监督特征波长选择的不足,提出一种基于PCA-MIE的过程模式构建方法,获得的过程模式子集更紧凑更具类别表现力。再利用贝叶斯统计学习算法,根据后验概率对构建的模式子集进行决策,判别生产过程的正常状态和故障状态。由于过程模式子集结合了PCA浓聚方差的优势和互信息熵相关性测度的特征信息选择方法,蕴含了更多的近红外光谱的本质信息与内在规律,从而更能刻画工业过程的运行状态。接着,设置测试准确率TA作为评估标准,用以评价故障检测方法的性能效果。最后利用某化工厂提供的原油脱盐脱水过程近红外光谱数据对所提方法进行验证,并与传统近红外光谱特征信息提取方法PCA和MIE方法性能进行对比分析,结果表明基于PCA-MIE的过程模式故障检测方法几乎在所有维数子集上性能都优于其他两种方法,在特征维数为18维时获得最高的准确率94. 6%,证明了方法的优越性。 相似文献
19.
纺织纤维的快速鉴别对我国纺织品生产过程质量控制、贸易和市场监督具有重要实际意义。文章收集了的12种纺织纤维共214个样品,研究了各种形态样品的近红外光谱测量方法。采用多元光散射校正方法消除噪声和基线漂移对光谱的影响。对样品总集光谱进行系统树分析,发现组成接近的纤维样本能均够聚类在一起,有些不同种类纤维之间有交叠。结合近红外光谱和簇类的独立软模式方法(SIMCA),可以实现化学组成非常接近的不同纤维种类的区分。该研究结果表明,采用近红外分析技术,实现非破坏性地快速鉴别纺织纤维是可行的。 相似文献