首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A comparative study on weak anion exchangers was performed to investigate the pH dependence, binding strength, particle size distribution, and static and dynamic capacity of the chromatographic resins. The resins tested included: DEAE Sepharose FF, Poros 50 D, Fractogel EMD DEAE (M), MacroPrep DEAE Support, DEAE Ceramic HyperD 20, and Toyopearl DEAE 650 M. Testing was performed with five different model proteins: Anti-FVII mAb (immunoglobulin G), aprotinin, bovine serum albumin (BSA), Lipolase (Novozymes), and myoglobin. Retention showed an expected increasing trend as a function of pH for proteins with low pI. A decrease in retention was observed for some resins at pH 9 likely due to initiation of deprotonation of the weak anion-exchange ligands. Expected particle size distribution was obtained for all resins compared to previous studies. Binding strength to weak anion-exchange resins as a function of ionic strength depends on the specific protein. Binding and elution at low salt concentration may be performed with Toyopearl DEAE 650 M, while binding and elution at high salt concentration may be performed with MacroPrep DEAE Support. Highest binding capacities were generally obtained with Poros 50 D followed by DEAE Ceramic HyperD 20. A general good agreement was obtained between this study and data obtained by the suppliers. Verification of binding strength trends with model proteins was achieved with human growth hormone (hGH) and a hGH variant on the same resins with different elution salts, sodium chloride, sodium hydrogenphosphate, sodium sulphate, and sodium acetate. Static capacity measurements obtained in the traditional experimental set-up were compared with high-throughput screening (HTS) technique experiments with reasonable agreement. Isotherm data obtained from HTS techniques and pulse experiments were successfully combined with mathematical modelling to simulate, develop and optimise the separation process of two model proteins, Lipolase and BSA. The data presented in this paper may be used for selection of resins for testing in process development.  相似文献   

2.
A comparative study was performed on heparin resins and strong and weak cation exchangers to investigate the pH dependence, efficiency, binding strength, particle size distribution, static and dynamic capacity, and scanning electron microscopy pictures of chromatographic resins. The resins tested include: Heparin Sepharose FF, SP Sepharose FF, CM Sepharose FF, Heparin Toyopearl 650 m, SP Toyopearl 650 m, CM Toyopearl 650 m, Ceramic Heparin HyperD M, Ceramic S HyperD 20, and Ceramic CM HyperD F. Testing was performed with four different proteins: anti-FVII Mab (IgG), aprotinin, lysozyme, and myoglobin. Dependence of pH on retention was generally very low for proteins with high isoelectric point (pI), though some decrease of retention with increasing pH was observed for CM Ceramic HyperD F and S Ceramic HyperD 20. Binding of anti-FVII Mab with pI < 7.5 was observed on several resins at pH 7.5. Efficiency results show the expected trend of increasing dependence of the plate height with increasing flow rate of Ceramic HyperD resins followed by Toyopearl 650 m resins and the highest flow dependence of the Sepharose FF resins corresponding to their pressure resistance. Determination of particle size distribution by two independent methods, coulter counting and SEM, was in good agreement. Binding strength of cation-exchange resins as a function of ionic strength varies depending on the protein. Binding and elution at high salt concentration may be performed with Ceramic HyperD resins, while binding and elution at low salt concentration may be performed with model proteins on heparin resins. Employing proteins with specific affinity for heparin, a much stronger binding is observed, however, some cation exchangers may still be good substitutions for heparin resins. Dynamic capacity at 10% breakthrough compared to static capacity measurements and dynamic capacity displays that approximately 40-80% of the total available capacity is utilized during chromatographic operation depending on flow rate. A general good agreement was obtained between results of this study and data obtained by others. Results of this study may be used in the selection of resins for testing during protein purification process development.  相似文献   

3.
A comparative study was performed on strong anion exchangers to investigate the pH dependence, titration curves, efficiency, binding strength, particle size distribution, and static and dynamic capacity of the chromatographic resins. The resins tested included Q Sepharose XL, UNO Q-1, Poros 50 HQ, Toyopearl QAE 550c, Separon HemaBio 1000Q, Q-Cellthru Bigbeads Plus, Q Sepharose HP and Toyopearl SuperQ 650s. Testing was performed with five different proteins: anti-Factor VII monoclonal antibody (immunoglobulin G), aprotinin, bovine serum albumin, lipolase and myoglobin. The dependence of pH on retention varies from generally low to very high for proteins with a low isoelectric point (pl). An unexpected binding at pH 7-8 of aprotinin with pI >11 was observed on Separon HemaBio 1000Q. No link between pH dependence on retention and titration curves of the different resins was observed. Efficiency results show the expected trend of higher dependence of the plate height with increasing flow-rate of soft resins compared to resins for medium- and high-pressure operation. No or a very small difference in particle size distribution was obtained between new and used resins. Binding to anion-exchange resins as a function of ionic strength varies to some extent depending on the specific protein. Generally, binding and elution at high salt concentration may be performed with Q Sepharose XL, Toyopearl QAE 550c, Q Sepharose HP and Poros 50 HQ, while binding and elution at low salt concentration may be performed with Q-Cellthru Bigbeads Plus. A very high binding capacity was obtained with Q Sepharose XL. Comparison of static capacity and dynamic capacity at 10% breakthrough shows approx. 50-80% utilization of the total available capacity during chromatographic operation. A general good agreement was obtained between this study and data obtained by the suppliers. The results of this study may be used for selection of resins for testing in process development.  相似文献   

4.
A comparative study was performed on strong cation-exchangers to investigate the pH dependence, efficiency, binding strength, particle size distribution, static and dynamic capacity, and SEM pictures of chromatographic resins. The resins tested included: SP Sepharose XL, Poros 50 HS, Toyopearl SP 550c, SP Sepharose BB, Source 30S, TSKGel SP-5PW-HR20, and Toyopearl SP 650c. Testing was performed with four different proteins: anti-FVII Mab (IgG), aprotinin, lysozyme, and myoglobin. Dependence of pH on retention was generally very low for proteins with high pI. An unexpected binding at pH 7.5 of anti-FVII Mab with pI < 7.5 was observed on several resins. Efficiency results show the expected trend of higher dependence of the plate height with increasing flow rate of soft resins compared to resins for medium and high-pressure operation. Determination of particle size distribution by two independent methods, Coulter counting and SEM, was in very good agreement. The mono-dispersed nature of Source 30S was confirmed. Binding to cation-exchange resins as a function of ionic strength varies depending on the specific protein. Generally, binding and elution at high salt concentration may be performed with Toyopearl SP 550c and Poros 50 HS, while binding and elution at low salt concentration may be performed with Toyopearl SP 650c. A very high binding capacity was obtained with SP Sepharose XL. Comparison of static capacity and dynamic capacity at 10% break-through shows in general approximately 50-80% utilisation of the total available capacity during chromatographic operation. A general good agreement was obtained between this study and data obtained by others. The results of this study may be used for selection of resins for testing in process development. The validity of experiments and results with model proteins were tested using human insulin precursor in pure state and in real feed-stock on Toyopearl SP 550c, SP Sepharose BB, and Toyopearl SP 650c. Results showed good agreement with experiments with model proteins.  相似文献   

5.
Hydrophobic charge‐induction chromatography is a new technology for antibody purification. To improve antibody adsorption capacity of hydrophobic charge‐induction resins, new poly(glycidyl methacrylate)‐grafted hydrophobic charge‐induction resins with 5‐aminobenzimidazole as a functional ligand were prepared. Adsorption isotherms, kinetics, and dynamic binding behaviors of the poly(glycidyl methacrylate)‐grafted resins prepared were investigated using human immunoglobulin G as a model protein, and the effects of ligand density were discussed. At the moderate ligand density of 330 μmol/g, the saturated adsorption capacity and equilibrium constant reached the maximum of 140 mg/g and 25 mL/mg, respectively, which were both much higher than that of non‐grafted resin with same ligand. In addition, effective pore diffusivity and dynamic binding capacity of human immunoglobulin G onto the poly(glycidyl methacrylate)‐grafted resins also reached the maximum at the moderate ligand density of 330 μmol/g. Dynamic binding capacity at 10% breakthrough was as high as 76.3 mg/g when the linear velocity was 300 cm/h. The results indicated that the suitable polymer grafting combined with the control of ligand density would be a powerful tool to improve protein adsorption of resins, and new poly(glycidyl methacrylate)‐grafted hydrophobic charge‐induction resins have a promising potential for antibody purification applications.  相似文献   

6.
Radical induced grafting of styrene (S) and acrylonitrile (AN) on to an unsaturated ethylene-propylene based terpolymer (EPTM) in mixed solvents has been investigated. Molecular weight, molecular weight distribution, conversion of ungrafted poly(styrene-co-acrylonitrile) (SAN) with 25 w% of AN and its degree of graft on to EPTM have been reported as functions of composition of the toluene/η-heptane mixture used as solvent. Mechanical properties of ATS resins are strongly dependent on the degree of graft of SAN resins and the molecular parameters of the ungrafted SAN; both are influenced by toluene content in the solvent mixture.  相似文献   

7.
雷景新  廖霞  高峻 《化学学报》2001,59(5):685-689
采用接枝量、ATR-IR、SEM、与水接触角、溶血试验和再钙化时间等测试手段研究了电火花引发甲基丙烯酸β-羟乙酯(HEMA)表面接枝低密度聚乙烯(LAPE)薄膜的接枝聚合反应影响因素、表面结构和血液相容性。结果表明,电火花能有效引发HEMA在LDMA薄膜表面接枝聚合反应,随接枝聚合反应时间延长、单体浓度的增大。接枝量增大。随反应温度升高,接枝量增大到一最大值后,进一步升高反应温度,接枝量下降,最佳接枝聚合温度为60℃当在60℃单体φ=5%水溶液是反应2h时,经空气气氛和1.5kV电火花预处理72s和LDPE薄膜表面接枝量可达169ug/cm^2。接枝改性后LDPE薄膜与水的接触下降,亲水性增加,溶血程度减小,再钙化时间延长,血液相容性得到改善。  相似文献   

8.
采用FT-IR,ESCA,试样与水接触角和接枝率的测定探索了电火花用于引发丙烯酰胺(AAM)在BOPP薄膜表面接枝聚合反应的方法,研究了接枝BOPP薄膜的表面结构和亲水性能。结果表明,电火花能有效地引发AAM在BOPP薄膜表面的接枝聚合反应,随着电火花处理时间和接枝反应时间的延长,AAM在BOPP薄膜表面的接枝率增大。电火花处理10min,BOPP薄膜在70℃,20%(质量分数)的AAM水溶液中反应1h,接枝率高达2.06%。接枝后BOPP薄膜与水的接触角显著下降,亲水性能得到明显改善。  相似文献   

9.
Heterogeneous grafting on polyvinylchloride suspended in water was carried out using N-butyl-3-mercaptopropionamide as nucleophile. Over 50% graft was obtained by using a small amount of solvent as a swelling agent and tricapryl methyl ammonium chloride as a phase transfer catalyst. Elemental analysis of the grafted polymer shows that the chlorine displaced from the polymers is replaced by the thio-amide group. The above conclusion is supported by NMR and IR analysis. The kinetics of the chlorine displacement from PVC by the thio amide group obeys the Shell progressive mechanism. The rate at which an individual spherical particle reacts depends on the diffusion through the reacted layer. The grafted polymer is soluble in tetrahydrofuran or nitrobenzene. The films obtained from the grafted material are brittle due to excessive internal hydrogen bonding. The electrostatic charge which is a characteristic surface phenomena in PVC is diminished in the grafted polymer which may be due to the existence of the amide group near the surface. The amide groups attached to the side chains on the polymer may participate in various reactions, e.g., with epoxy resins. IR analysis of the cured film indicates the disappearance of the oxiran band at 913 cm?1 and an increase in the hydroxyl band around 3300 cm?1. Thus, grafting of amide groups on PVC enables us to further modify PVC by epoxy resins.  相似文献   

10.
Strong and weak cation-exchangers were compared for a number of chromatographic parameters, i.e. pH dependence, efficiency, binding strength, particle size distribution, static and dynamic capacity, and scanning electron microscopy (SEM) pictures. Chromatographic resins investigated were Fractogel EMD SO3- (M), Fractogel EMD SE Hicap (M), Fractogel EMD COO- (M), MacroPrep 25S, MacroPrep High S, MacroPrep CM, CM HyperZ, and Matrex Cellufine C-500. Testing was done with three proteins: Anti-FVII Mab (IgG), aprotinin, and lysozyme. For lysozyme and aprotinin with pI above experimental pH, dependence of pH on retention was generally low, though some pronounced decrease of retention with increasing pH was observed for CM HyperZ. For Anti-FVII Mab with pI<7.5, binding was observed on several resins at pH 7.5. Efficiency results present the expected trend of increasing dependence of plate height as a function of increasing flow rate, and the highest flow dependence was observed for Fractogel EMD COO-. Particle size distribution was determined by two independent methods, coulter counting and SEM pictures, with fair agreement. Binding strength data of cation-exchange resins as a function of ionic strength depends on the protein, but binding and elution at high salt concentration may in general be performed with MacroPrep resins. Comparison of dynamic capacity data at 10% break-through and static capacity measurements shows that a very diverse utilization of approximately 25-90% of the total available capacity is employed during chromatographic operation. The effect of competitive binding from yeast fermentation components on dynamic binding capacity of aprotinin was studied showing a significant decrease in binding capacity. Sepharose FF, Toyopearl 650 M, and Ceramic HyperD F strong and weak cation-exchange resins were included in this study. Resins with good pure aprotinin capacity also performed well for aprotinin in fermentation broth, but the highest relative capacity was obtained with MacroPrep High S having a fairly low pure component dynamic capacity. Results of this paper may be used in the selection of resins for further testing in biopharmaceutical protein purification process development.  相似文献   

11.
The basic properties of a new dye affinity adsorbent Toyopearl AF-Blue HC-650M and its applications to the purification of proteins were studied. The binding capacity for human serum albumin (HSA) was greater than 18 mg per ml gel. The dye leakage from Toyopearl AF-Blue HC-650M in 0.5 M NaOH and 0.5 M HCI was less compared with an agarose adsorbent. Caustic stability study also demonstrated this material withstood exposure to 0.1 M NaOH for 1 month with no significant loss of binding capacity for HSA. We purified human albumin from human serum and lactate dehydrogenase (LDH) from rabbit muscle extract in a single step. Sodium dodecylsulfate-polyacrylamide gel electrophoresis indicates that human albumin and LDH were highly purified.  相似文献   

12.
Anion exchange chromatography (AEC) is a useful and effective tool for DNA purification, but due to average pore sizes between 40 and 100 nm most AEC resins lack truly useful binding capacities for plasmid DNA (pDNA). Equilibrium binding capacities and uptake kinetics of AEC media including conventional media (Source 30 Q, Q Sepharose HP), a polymer grafted medium (Fractogel EMD DEAE (M)), media with large pores (Celbeads DEAE, PL SAX 4000 A 30 microm) and a monolithic medium (CIM-DEAE) were investigated by batch uptake or shallow bed experiments at two salt concentrations. Theoretical and experimental binding capacities suggest that the shape of the pDNA molecule can be described by a rod with a length to diameter ratio of 20:1 and that the molecule binds in upright position. The arrangement of DNA like a brush at the surface can be considered as entropy driven, kind of self-assembly process which is inherent to highly and uniformly charged DNA molecules. The initial phase of adsorption is very fast and levels off, associated with a change in mass transfer mechanism. Feed concentrations higher than 0.1 mg/mL pDNA pronounce this effect. Monolithic media showed the fastest adsorption rate and highest binding capacity with 13 mg pDNA per mL.  相似文献   

13.
Two cation-exchange membranes modified with the carboxylic acid group for battery separator were prepared by radiation-induced grafting of acrylic acid (AA) and methacrylic acid (MA) onto a polyethylene (PE) film. The surface area, thickness, volume, water uptake, ion-exchange capacity, specific electric resistance, and electrolyte flux were evaluated after PE film was grafted with AA and MA. It was found that KOH diffusion flux of AA-grafted PE membrane and MA-grafted PE membrane increased with an increase in the degree of grafting. AA-grafted PE membrane had a higher diffusion flux than MA-grafted PE membrane. Electrical resistance of two cation-exchange membranes modified with AA and MA decreased rapidly with an increase in the degree of grafting.  相似文献   

14.
The binding capacity and adsorption kinetics of a monoclonal antibody (mAb) are measured for experimental cation exchangers obtained by grafting dextran polymers to agarose beads and compared with measurements for two commercial agarose-based cation exchangers with and without dextran grafts. Introduction of charged dextran polymers results in enhanced adsorption kinetics despite a dramatic reduction of the accessible pore size as determined by inverse size-exclusion chromatography. Incorporation of neutral dextran polymers in a charged agarose bead results instead in substantially lower binding capacities. The effective pore diffusivities obtained from batch uptake curves increase substantially as the protein concentration is reduced for the resins containing charged dextran grafts, but are much less dependent on protein concentration for the resins with no dextran or uncharged dextran grafts. The batch uptake results are corroborated by microscopic observations of transient adsorption in individual particles. In all cases studied, the adsorption kinetics is characterized by a sharp adsorption front consistent with a shell-progressive, diffusion limited mechanism. Greatly enhanced transport rates are obtained with an experimental resin containing charged dextran grafts with effective pore diffusivities that are 1-9 times larger than the free solution diffusivity and adsorption capacity approaching 300 mg/cm3 of particle volume.  相似文献   

15.
An IgG-specific camelid antibody matrix (BAC, Naarden, The Netherlands), developed from an immune phage display library, was characterized regarding engineering properties including mass transfer characteristics. Uptake kinetics and equilibrium binding capacity were determined by a finite bath method. Adsorption kinetic parameters were also determined using a real time biosensor. Slightly different properties to conventional Staphylococcal protein A affinity media were shown; especially a 2–2.5 times lower maximal binding capacity with a value of 26 mg/ml polyclonal IgG was obtained. Mass transfer could be described by using a film and pore diffusion model (De = 5 × 10−8 cm2/s). Determined engineering parameters were used to predict breakthrough behaviour in column mode considering film and pore resistances. The dynamic binding capacity at 10% breakthrough did not change when residence time was at least 6 min.  相似文献   

16.
Preparative continuous annular chromatography, a method to separate proteins in a truly continuous manner, was investigated in an industrial environment. Plasma-derived clotting factor IX concentrate was used as model protein. Separation of vitronectin, a common impurity in commercial available factor IX concentrates, from factor IX was studied and compared to conventional packed bed chromatography in batch mode. As sorbent, Toyopearl DEAE 650M was used. Regeneration was performed simultaneously with the purification of factor IX in continuous mode. All required parameters applied for preparative annular chromatography such as feed flow-rate and elution flow-rate were first estimated from experiments on conventional batch columns. Then preparative annular chromatography and conventional packed beds were compared regarding enrichment, purity and productivity. Three different process scenarios, the optimal batch process,the preparative annular chromatography process and the batch process equivalent to the preparative annular chromatography process were investigated. The productivity of the optimal batch process was higher than that of the preparative annular chromatography and batch process equivalent to the preparative annular chromatography process. Therefore the throughput could not be increased by the use of the continuous chromatographic system.  相似文献   

17.
The ion-exchange adsorption kinetics of bovine serum albumin (BSA) and gamma-globulin to an anion exchanger, DEAE Spherodex M, has been studied by batch adsorption experiments. Various diffusion models, that is, pore diffusion, surface diffusion, homogeneous diffusion and parallel diffusion models, are analyzed for their suitabilities to depict the adsorption kinetics. Protein diffusivities are estimated by matching the models with the experimental data. The dependence of the diffusivities on initial protein concentration is observed and discussed. The adsorption isotherm of BSA is nearly rectangular, so there is little surface diffusion. As a result, the surface and homogeneous diffusion models do not fit to the kinetic data of BSA adsorption. The adsorption isotherm of gamma-globulin is less favorable, and the surface diffusion contributes greatly to the mass transport. Consequently, both the surface and homogeneous diffusion models fit to the kinetic data of gamma-globulin well. The adsorption kinetics of BSA and gamma-globulin can be very well fitted by parallel diffusion model, because the model reflects correctly the intraparticle mass transfer mechanism. In addition, for both the favorably bound proteins, the pore diffusion model fits the adsorption kinetics reasonably well. The results here indicate that the pore diffusion model can be used as a good approximate to depict protein adsorption kinetics for protein adsorption systems from rectangular to linear isotherms.  相似文献   

18.
In the final product of a bimodal bigraft ABS, consisting of crosslinked polybutadiene particles (diameter 100 nm) with grafted and ungrafted poly (styrene-co-acrylonitrile) (=SAN) with an acrylonitrile (=AN) content of 28 weight %, crosslinked polybutadiene particles (diameter 300 nm) with grafted and ungrafted SAN with an AN content of 12 weight % and an added SAN with an AN content of 28 weight % the following parameters can be determined: degree of grafting of the small polybutadiene particles, degree of grafting of the large polybutadiene particles, acrylonitrile content of the grafted chains of the small polybutadiene particles, acrylonitrile content of the grafted chains of the large polybutadiene particles, grafting efficiency of the large particles, average particle diameter and particle diameter distribution of the small particles, average particle diameter and particle diameter distribution of the big particles, molar mass distribution of the ungrafted chains of the large particles, chemical distribution of the ungraftd chains of the large particles, molar mass distribution of the SAN resin added, chemical distribution of the SAN resin added.Preparative differential ultracentrifugation in acetone/-butyrolacrone (volume ratio 0.550.45), FTIR spectrometry and electron microscopy of the floating and sedimentating fraction yield the degree of grafting and AN content of the graft chains of the large particles and the degree of grafting and AN content of the graft chains of the small particles.Preparative differential centrifugation, FTIR spectrometry and electron microscopy of the fractions give nearly equivalent results. Fractional demixing with the demixing solvents ethylene carbonate/tetraline of the acetone-soluble part yields the SAN with 12 weight % AN in the upper-phase and the SAN with 28 weight % AN in the lower phase.Size exclusion chromatography (SEC) and high-performance precipitation liquid chromatography (HPPLC) of the fractions yield the molecular distribution and chemical distribution of the different SAN resins. SEC, coupled with turbidimetric titration of the acetone-soluble fractions withn-hexane as precipirant, indicates SAN resin with lower AN content in addition to the SAN resin with 28 weight % AN.Dedicated to Prof. Dr. Dr. h.c. mult. Karl Heinz Büchel on the occasion of his 60th birthday  相似文献   

19.
An efficient single-step purification protocol for recombinant cytochrome P450 BM-3 from Bacillus megaterium, expressed in E. coli, was developed. Functional crude protein was obtained by disintegrating induced E. coli DH5 alpha and removing cell debris by centrifugation. After investigating different anion-exchange matrices, elution salts and the elution procedures involving an AKTAexplorer system, adsorption of the crude extract from lysed E. coli to Toyopearl DEAE 650M anion exchanger, followed by a two-step elution using NaCl, proved sufficient to isolate almost pure protein without inactivation (up to 93% P450 BM-3 content) in yields that ranged between 79-86%. The purification method could be scaled up 1500-fold and higher without further optimization to a 6-1 production-scale column containing Toyopearl DEAE 650M anion exchanger.  相似文献   

20.
The structure and some physico-chemical properties of radiation grafted FEP-g-polystyrenesulfonic acid proton exchange membranes were studied as a function of the degree of grafting. The distribution of grafted polymer across the membrane thickness was obtained from microprobe measurements. It was found that for low levels of grafting (ca. 3%), polystyrene chains are located near the membrane surface only, and the interior of the membrane remains ungrafted. With the increasing degree of grafting, polystyrene chains were incorporated into the interior of the membrane as well. An almost homogeneous distribution of grafts in the membrane was obtained at a graft level of > 13%. The influence of the degree of grafting on membrane properties, such as ion exchange capacity, swelling, and specific resistivity was studied. Three different states of water, viz., freezing free, freezing bound, and nonfreezing water have been identified in noncrosslinked membranes. However, the nature and the amount of crosslinker had a profound influence on the states of water in a membrane. © 1996 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号