首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chalcogenide glass Se55Ge30As15 have amorphous structure in both as-deposited and annealed conditions. The optical properties of the as-deposited and annealed films were studied using spectrophotometric measurements of transmittance, T(λ), and reflectance, R(λ), at normal incidence of light in the wavelength range 200–2500 nm. Neither annealing temperature nor film thickness can influence spectral response on refractive index and absorption index of films. The type of electronic transition responsible for optical properties is indirectly allowed transition with energy gap of 1.94 eV and phonon energy of 40 meV. The dispersion of the refractive index is discussed in terms of the single oscillator Wemple–Didomenico (WD) model. The width of band tails of localized states into the gap (ΔE), the single oscillator energy (Eo), the dispersion energy (Ed), the optical dielectric constant (ε), the lattice dielectric constant (εL), the plasma frequency (ωp) and the free charge carrier concentration (N) were estimated.  相似文献   

2.
The structure of the thermally evaporated cobalt phthalocyanine (CoPc) thin film in the β-form is investigated, and shows a single strong peak indicating preferential orientation in the (1 0 0) direction. Some structural parameters such as crystallite grain size, dislocation density and the number of crystallites per unit surface area are determined.The spectral parameters are determined by applying the electronic orbital transitions.But the optical parameters are deduced using band-model consideration for thin films of Pc.The spectral and optical parameters have also been investigated by using the spectrophotometric measurements of transmittance and reflectance in the wavelength range 200–2500 nm.The absorption spectra recorded in the UV–VIS region show two absorption bands of phthalocyanine (Pc) molecule, namely the Soret band (B) and the Q-band. The Q-band shows its characteristic splitting (Davydov splitting) with ΔQ=0.23 eV.Some of the important spectral parameters, namely optical absorption coefficient (α), molar extinction coefficient (molar), oscillator strength (f), electric dipole strength (q2) and absorption half bandwidth (Δλ) of the principle optical transitions have been evaluated.The fundamental and the onset indirect energy gaps could be estimated as 2.90 + or − 0.05 and 1.51 eV, respectively.The refractive index showed an anomalous dispersion in the absorption region as well as normal dispersion in the transparent region. From analysis of dispersion curves, the dielectric constants, the dispersion parameters and the molar polarizability were obtained.All the above parameters were obtained for films as deposited and as annealed. No remarkable annealing effect on many parameters was observed.  相似文献   

3.
Thin Bis-(dimethylglyoximato)nickel(II) [Ni(DMG)2] films of amorphous and crystalline structures were prepared by vacuum deposition on Si (P) substrates. The films were characterised by X-ray fluorescence and X-ray diffraction. The constructed Al/Ni(DMG)2/Si(P) metal-insulator-semiconductor devices were characterised by the measurement of the gate-voltage dependence of their capacitance and ac conductance, from which the surface states density Dit of insulator/semiconductor interface and the density of the fixed charges in the oxide were determined. The ac electrical conduction and dielectric properties of the Ni(DMG)2-Silicon structure were studied at room temperature. The data of the ac measurements of the annealed films follow the correlated barrier-hopping CBH mode, from which the fundamental absorption bandgap, the minimum hopping distance, and other parameters of the model were determined.  相似文献   

4.
Thin films of Cu2S on opaque gold layers and quartz substrates at the temperature of 393 K were deposited by a thermal evaporation technique. The surface morphology of the Cu2S thin films at different thicknesses is investigated by AFM. It is seen that all the films are composed of highly coordinated spherical nano-sized particles well adhered to the substrate. The transmittance and reflectance spectra of Cu2S thin films on the quartz substrate were recorded by a UV–visible spectrophotometer. The results show that the thermally evaporated Cu2S thin films have the characteristic transmittance and reflectance suitable for optoelectronic applications. The stoichiometry and surface morphology of a grown Cu2S thin film were confirmed by energy-dispersive X-ray spectroscopy (EDAX) and scanning electron microscopy (SEM), respectively. The dependence of the refractive index and the extinction coefficient on the photon energy for both the surface film and the opaque gold layer have been determined by ellipsometry. From the spectral behaviour of the absorption coefficient at two distinct absorption regions, a dual-band scheme of optical absorption for a Cu2S thin film is described. The indirect and direct edges of Cu2S are found to be about at 0.91 eV and 2.68 eV, respectively.  相似文献   

5.
Summary The morphological structure of SnTe very thin films is here studied by X-ray photoemission spectroscopy, by transmission electron spectroscopy and by X-ray diffraction. The analisys of experimental data evidences the superficial confinement of Sn, with different oxidation states, and the Te excess in the inner layers. The energy shift of the valence band peaks is attributed to modifications induced by the nonstoichiometry of the compound. Preliminary Hall and resistivity measurements seem to confirm the structural obtained results.  相似文献   

6.
We report optical and luminescence properties of 3-N, N-diacetylaminobenzanthrone thin films deposited on glass substrate by thermal evaporation. The structural and optical properties of organic thin films were studied by means of the confocal microscope with an input of femtosecond laser radiation, X-ray diffractometer, and scanning electron microscope (SEM). Intense luminescence with the maximum at 530 nm was observed when excited by laser radiation with the wavelengths 458, 476, 488, 496, 514 nm. In addition, the luminescence caused by two-photon absorption of femtosecond (fs) laser radiation has been investigated. Semi empirical calculations by AM1 and ZINDO/S methods and ab initio calculations using Gaussian software were carried out to estimate the electron system of structure. The calculations show planar configurations for the aromatic core and diacetylamino fragment of this compound. The study of the structure of benzanthrone derivative thin films with X-ray diffraction (XRD) methods, indicates the distance between molecular layers and ordered molecular fragments.  相似文献   

7.
Series of Fe thin films have been prepared by thermal evaporation onto glass and Si(1 0 0) substrates. The Rutherford backscattering (RBS), X-ray diffraction (XRD), Scanning electron microscopy (SEM) and the four point probe techniques have been used to investigate the structural and electrical properties of these Fe thin films as a function of the substrate, the Fe thickness t in the 76-431 nm range and the deposition rate. The Fe/Si samples have a 〈1 1 0〉 for all thicknesses, whereas the Fe/glass grows with a strong 〈1 0 0〉 texture; as t increases (>100 nm), the preferred orientation changes to 〈1 1 0〉. The compressive stress in Fe/Si remains constant over the whole thickness range and is greater than the one in Fe/glass which is relieved when t > 100 nm. The grain size D values are between 9.2 and 30 nm. The Fe/glass films are more electrically resistive than the Fe/Si(1 0 0) ones. Diffusion at the grain boundary seems to be the predominant factor in the electrical resistivity ρ values with the reflection coefficient R greater in Fe/glass than in Fe/Si. For the same thickness (100 nm), the decrease of the deposition rate from 4.3 to 0.3 Å/s did not affect the texture and the reflection coefficient R but led to an increase in D and a decrease in the strain and in ρ for both Fe/glass and Fe/Si systems. On the other hand, keeping the same deposition rate (0.3 Å/s) and increasing the thickness t from 76 to 100 nm induced different changes in the two systems.  相似文献   

8.
X-ray powder diffraction (XRD) of MgPc indicated that the material in the powder form is polycrystalline with monoclinic structure. Miller indices, h k l, values for each diffraction peak in XRD spectrum were calculated. Thermal evaporation technique was used to deposit MgPc thin films. The XRD studies were carried out for MgPc thin films where the results confirm the amorphous nature for the as-deposited films. While, polycrystalline films orientated preferentially to (1 0 0) plane with an amorphous background were obtained for films annealed at 623 K for 3 h. Optical properties of MgPc thin films were characterised by using spectrophotometric measurements of transmittance and reflectance in the spectral range from 190 to 2500 nm. The refractive index, n, and the absorption index, k, were calculated. According to the analysis of dispersion curves, the parameters, namely; the optical absorption coefficient (α), molar extinction coefficient (?molar), oscillator energy (Eos), oscillator strength (f), and electric dipole strength (q2) were also evaluated. The recorded absorption measurements in the UV-vis region show two well defined absorption bands of phthalocyanine molecule; namely the Q-band and the Soret (B-band). The Q-band showed its splitting characteristic (Davydov splitting), and ΔQ was obtained as 0.15 eV. The analysis of the spectral behaviour of the absorption coefficient (α), in the absorption region revealed indirect transitions. The transport and the near onset energy gaps were estimated as respectively 2.74 ± 0.02 and 1.34 ± 0.01 eV.  相似文献   

9.
The electrical transport properties and dielectric relaxation of Au/zinc phthalocyanine, ZnPC/Au devices have been investigated. The DC thermal activation energy at temperature region 400-500 K is 0.78 eV. The dominant conduction mechanisms in the device are ohmic conduction below 1 V and space charge limited conduction dominated by exponential trap distribution in potentials >1 V. Some parameters, such as concentration of thermally generated holes in valence band, the trap concentration per unit energy range at the valence band edge, the total concentration of traps and the temperature parameter characterizing the exponential trap distribution and their relation with temperatures have been determined. The AC electrical conductivity, σac, as a function of temperature and frequency has been investigated. It showed a frequency and temperature dependence of AC conductivity for films in the temperature range 300-400 K. The films conductivity in the temperature range 400-435 K increased with increasing temperature and it shows no response for frequency change. The dominant conduction mechanism is the correlated barrier hopping. The temperature and frequency dependence of real and imaginary dielectric constants and loss tangent were investigated.  相似文献   

10.
Nanostructured bismuth sulfide thin films were prepared onto glass substrates with particle size of 21 nm by thermal evaporation using readily prepared bismuth sulfide nanocrystallite powder. The X-ray diffraction pattern revealed that bismuth sulfide thin films exhibit orthorhombic structure. The existence of quantum confinement effect was confirmed from the observed band gap energy of 1.86 eV. AC and DC electrical conductivity of Al/BiSnc/Al structures was investigated in the frequency range 0.5-100 kHz at different temperatures (303-463 K) under vacuum. The AC conductivity (σac) is found to be proportional to angular frequency (ωs). The obtained experimental result of the AC conductivity showed that the correlated barrier hopping model is the appropriate mechanism for the electron transport in the nanostructured bismuth sulfide thin films. DC conduction mechanism in these films was studied and possible conduction mechanism in the bismuth sulfide thin films was discussed.  相似文献   

11.
Bi2Te3 films were prepared by thermal evaporation technique. X-ray diffraction analysis for as-deposited and annealed films in vacuum at 150 °C were polycrystalline with rhombohedral structure. The crystallite size is found to increase as the film thickness increases and has values in the range 67–162 nm. The optical constants (the refractive index, n, and absorption index, k) were determined using transmittance and reflectance data in the spectral range 2.5–10 μm for Bi2Te3 films with different thicknesses (25–99.5 nm). Both n and k are independent on the film thickness in the investigated range. It was also found that Bi2Te3 is a high refractive index material (n has values of 4.7–8.8 in the wavelength range 2.5–10 μm). The allowed optical transitions were found to be direct optical transitions with energy gap  eV. The optical conductivities σ1 = ƒ() and σ2 = f() show distinct peaks at about 0.13 and 0.3 eV, respectively. These two peaks can be attributed to optical interband transitions.  相似文献   

12.
Iodine doped ZnSe thin films were prepared onto uncoated and aluminium (Al) coated glass substrates using vacuum evaporation technique under a vacuum of 3 × 10−5 Torr. The composition, structural, optical and electrical properties of the deposited films were analyzed using Rutherford backscattering spectrometry (RBS), X-ray diffraction (XRD), spectroscopic ellipsometry (SE) and study of I-V characteristics, respectively. In the RBS analysis, the composition of the deposited film is calculated as ZnSeI0.003. The X-ray diffractograms reveals the cubic structure of the film oriented along (1 1 1) direction. The structural parameters such as crystallite size, strain and dislocation density values are calculated as 32.98 nm, 1.193 × 10−3 lin−2 m−4 and 9.55 × 1014 lin/m2, respectively. Spectroscopic ellipsometric (SE) measurements were also presented for the prepared iodine doped ZnSe thin films. The optical band gap value of the deposited films was calculated as 2.681 eV by using the optical transmittance measurements and the results are discussed. In the electrical studies, the deposited films exhibit the VCNR conduction mechanism. The iodine doped ZnSe films show the non-linear I-V characteristics and switching phenomena.  相似文献   

13.
This work describes the physical properties of lead iodide (PbI2) thin films with different thicknesses that were deposited on ultrasonically cleaned glass substrates using a thermal evaporation technique at 5×10-6 torr. The initial material was purified by the zone refining technique under an atmosphere of argon gas. XRD analysis of the material demonstrates that the thin films were preferably oriented along the (001) direction. The size of the crystallites was calculated from the Scherer relation and found to be in the range of ~5–10 nm, with higher values being observed for increasing film thicknesses. The optical energy band gaps were evaluated and determined to belong to direct transitions. Because the band gap increased with decreasing film thickness, a systematic blue shift was observed. The surface morphologies of PbI2 films exhibited a clear increase in grain size with increasing film thickness. The photoluminescence and dc conductivity of the thin films are also discussed.  相似文献   

14.
15.
CdS thin films are deposited onto glass substrates by vacuum evaporation at 373 K and the films are annealed at different temperatures. Rutherford backscattering spectrometry (RBS) and X-ray diffraction techniques are used to determine the thickness, composition, crystalline structure and grain size of the films. The films show a predominant hexagonal phase with small crystallites. The optical band gap of the films are estimated using the optical transmittance measurements. A decrease in the band gap is observed for the annealed films. The Raman peak position of the CdS A1 (LO) mode did not change much whereas, the full width at half maximum (FWHM) is found to decrease with annealing.  相似文献   

16.
The change in optical properties accompanying the amorphous crystalline transition has been studied for antimony trisulphide thin films. The real and imaginary parts of the dielectric constant are found to be much lower for amorphous films at lower photon energies, possibly because of a large number of defect states which would mostly disturb the top of the valence band and the conduction band comprised, respectively, of chalcogen lone pair and antibonding states. The crystalline material shows some structure in the imaginary part of the dielectric constant that corresponds to interband transitions, and apparently the direct band edge is at 1.88 eV. In the edge region the power law absorption has been observed in the amorphous material from which the extrapolated optical gap has been found to be 1.7 eV.  相似文献   

17.
The heterogeneous character of thin gold films prepared by thermal evaporation and the dependence of this heterogeneity on the rate of their deposition must be considered when exploiting their optical properties for biosensor purposes. For instance, the performance of thin gold films for surface plasmon resonance (SPR) biosensors may drastically be degraded if care is not taken to prepare a film with a high fraction of gold (>95%). We use three different models to interpret the SPR response of gold films prepared by thermal evaporation. We show that the interpretation of the SPR curves requires considering both a global heterogeneity of the gold films and a surface roughness. Our conclusions are further corroborated by scanning surface plasmon microscope (SSPM) images of these thin gold films.  相似文献   

18.
A stoichiometry CdTe nano-structured powder was synthesized by chemical process. Thin films of different thicknesses (40, 60, and 100 nm) of CdTe were prepared by thermal evaporation method onto silicon substrates. Current–voltage (I–V) and capacitance–voltage (C–V) characteristics of CdTe nanocrystalline thin films deposited on p-Si as heterojunction have been investigated. At low voltages, current in the forward direction was found to obey the diode equation and the conduction was controlled by thermionic emission mechanism. Also, various electrical parameters were determined from the I–V and C–V analysis. The thickness dependence of the obtained capacitance–voltage (C–V) characteristics was also considered.  相似文献   

19.
Titanium phthalocyanine dichloride (TiPcCl2) thin films are prepared on glass substrates by vacuum-sublimation technique. The optical constants of thin films are obtained by means of thin film spectrophotometry. Planar structures for the study of electrical properties are fabricated with TiPcCl2 as active layer and silver as the contact electrodes. The effects of post-deposition annealing on the optical band gap have been studied. The optical transition is found to be direct allowed in nature. The invariance in the optical band gap shows the thermal stability of the material. The activation energies are determined using the Arrhenius plots between electrical conductivity and inverse temperature. The variation in activation energy with post-deposition annealing is investigated. The unit cell dimensions of TiPcCl2 thin films are also determined by indexing the powder diffraction data. The variations of the surface morphology and grain size with annealing have also been studied.  相似文献   

20.
Zinc selenide (ZnSe) thin films (d = 0.11-0.93 μm) were deposited onto glass substrates by the quasi-closed volume technique under vacuum. Their structural characteristics were studied by X-ray diffraction (XRD) and atomic force microscopy (AFM). The experiments showed that the films are polycrystalline and have a zinc blende (cubic) structure. The film crystallites are preferentially oriented with the (1 1 1) planes parallel to the substrate surface. AFM images showed that the films have a grain like surface morphology. The average roughness, Ra = 3.3-6.4 nm, and the root mean square roughness, Rrms = 5.4-11.9 nm, were calculated and found to depend on the film thickness and post-deposition heat treatment.The spectral dependence of the absorption coefficient was determined from transmission spectra, in the range 300-1400 nm.The values of optical bandgap were calculated from the absorption spectra, Eg = 2.6-2.7 eV.The effect of the deposition conditions and post-deposition heat treatment on the structural and optical characteristics was investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号