首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Highly homogenous α zein protein was isolated from maize kernels in an environment‐friendly process using 95% ethanol as solvent. Due to the polyploidy and genetic polymorphism of the plant source, the application of high resolution separation methods in conjunction with precise analytical methods, such as MALDI‐TOF‐MS, is required to accurately estimate homogeneity of products that contain natural zein protein. The α zein protein product revealed two main bands in SDS‐PAGE analysis, one at 25 kDa and other at 20 kDa apparent molecular mass. Yet, high resolution 2DE revealed approximately five protein spot groups in each row, the first at ca. 25 kDa and the second at ca. 20 kDa. Peptide mass fingerprinting data of the proteins in the two dominant SDS‐PAGE bands matched to 30 amino acid sequence entries out of 102 non‐redundant data base entries. MALDI‐TOF‐MS peptide mapping of the proteins from all spots indicated the presence of only α zein proteins. The most prominent ion signals in the MALDI mass spectra of the protein mixture of the 25 kDa SDS gel band after in‐gel digestion were found at m/z 1272.6 and m/z 2009.1, and the most prominent ion signals of the protein mixture of the 20 kDa band after in‐gel digestion were recorded at m/z 1083.5 and m/z 1691.8. These ion signals have been found typical for α zein proteins and may serve as marker ion signals which upon chymotryptic digestion reliably indicate the presence of α zein protein in two hybrid corn products.  相似文献   

2.
Current biological studies have been advanced by the continuous development of robust, accurate, and sensitive mass spectrometric technologies. The MALDI LTQ Orbitrap is a new addition to the Orbitrap configurations, known for their high resolving power and accuracy. This configuration provides features inherent to the MALDI source, such as reduced spectra complexity, forgiveness to contaminants, and sample retention for follow-up analyses with targeted or hypothesis-driven questions. Here we investigate its performance for characterizing the composition of isolated protein complexes. To facilitate the assessment, we selected two well characterized complexes from Saccharomyces cerevisiae, Apl1 and Nup84. Manual and automatic MS and MS/MS analyses readily resolved their compositions, with increased confidence of protein identification compared with our previous reports using MALDI QqTOF and MALDI IT. CID fragmentation of singly-charged peptides provided sufficient information for conclusive identification of the isolated proteins. We then assessed the resolution, accuracy, and sensitivity provided by this instrument in the context of analyzing the isolated protein assemblies. Our analysis of complex mixtures of singly-charged ions up to m/z 4000 showed that (1) the resolving power, inversely proportional to the square root of m/z, had over four orders of magnitude dynamic range; (2) internal calibration led to improved accuracy, with an average absolute mass error of 0. 5 ppm and a distribution centered at 0 ppm; and (3) subfemtomole sensitivity was achieved using both CHCA and DHB matrices. Additionally, our analyses of a synthetic phosphorylated peptide in mixtures showed subfemtomole level of detection using neutral loss scanning.  相似文献   

3.
Proteins in the nucleus accumbens mediate many cocaine‐induced behaviors. In an effort to measure changes in nucleus accumbens protein expression as potential biomarkers for addiction, coronal tissue sections were obtained from rats that developed behavioral sensitization after daily administration of cocaine, or from daily saline‐treated controls. The tissue sections were subjected to matrix‐assisted laser desorption/ionization (MALDI) mass spectrometry (MS) profiling and tissue imaging. For profiling experiments, brain sections were manually spotted with matrix over the nucleus accumbens, a brain region known to regulate cocaine sensitization. Summed mass spectra (10 000 laser shots, grid) were acquired and spectra were aligned to reference peaks. Using bioinformatics tools, eight spectral features were found to be altered by cocaine treatment. Based on additional sequencing experiments with MALDI tandem MS and database searches of measured masses, secretoneurin (m/z 3653) was identified as having an increased expression. In addition, the distribution of m/z 3653 in the nucleus accumbens was determined by MALDI tissue imaging, and the increased expression of its precursor protein, secretogranin II, was verified by immunoblotting. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
In this work, we combined a newly developed matrix coating technique – matrix coating assisted by an electric field (MCAEF) and matrix‐assisted laser desorption/ionization mass spectrometry (MALDI‐MS) to enhance the imaging of peptides and proteins in tissue specimens of human prostate cancer. MCAEF increased the signal‐to‐noise ratios of the detected proteins by a factor of 2 to 5, and 232 signals were detected within the m/z 3500–37500 mass range on a time‐of‐flight mass spectrometer and with the sinapinic acid MALDI matrix. Among these species, three proteins (S100‐A9, S100‐A10, and S100‐A12) were only observed in the cancerous cell region and 14 proteins, including a fragment of mitogen‐activated protein kinase/extracellular signal‐regulated kinase kinase kinase 2, a fragment of cAMP‐regulated phosphoprotein 19, 3 apolipoproteins (C‐I, A‐I, and A‐II), 2 S100 proteins (A6 and A8), β‐microseminoprotein, tumor protein D52, α‐1‐acid glycoprotein 1, heat shock protein β‐1, prostate‐specific antigen, and 2 unidentified large peptides at m/z 5002.2 and 6704.2, showed significantly differential distributions at the p < 0.05 (t‐test) level between the cancerous and the noncancerous regions of the tissue. Among these 17 species, the distributions of apolipoprotein C‐I, S100‐A6, and S100‐A8 were verified by immunohistological staining. In summary, this study resulted in the imaging of the largest group of proteins in prostate cancer tissues by MALDI‐MS reported thus far, and is the first to show a correlation between S100 proteins and prostate cancer in a MS imaging study. The successful imaging of the three proteins only found in the cancerous tissues, as well as those showing differential expressions demonstrated the potential of MCAEF‐MALDI/MS for the in situ detection of potential cancer biomarkers. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
6.
Matrix-assisted ionization vacuum (MAIV) is a novel ionization technique that generates multiply charged ions in vacuum without the use of laser ablation or high voltage. MAIV can be achieved in intermediate-vacuum and high-vacuum matrix-assisted laser desorption/ionization (MALDI) sources and electrospray ionization (ESI) sources without instrument modification. Herein, we adapt MAIV onto the MALDI-LTQ-Orbitrap XL platform for biomolecule analysis. As an attractive alternative to MALDI for in solution and in situ analysis of biomolecules, MAIV coupling to high resolution and accurate mass (HRAM) MS instrument has successfully expanded the mass detection range and improved the fragmentation efficiency due to the generation of multiply charged ions. Additionally, the softness of MAIV enables potential application in labile post-translational modification (PTM) analysis. In this study, proteins as large as 18.7 kDa were detected with up to 18 charges; intact peptides with labile PTM were well preserved during the ionization process and characterized MS/MS; peptides and proteins in complex tissue samples were detected and identified both in liquid extracts and in situ. Moreover, we demonstrated that this method facilitates MS/MS analysis with improved fragmentation efficiency compared to MALDI-MS/MS.  相似文献   

7.
A MALDI source is interfaced to a modified LTQ Orbitrap XL instrument. This work gives insight into the MALDI source design and shows results obtained with the MALDI source coupled to an accurate mass, high-resolution hybrid mass spectrometer. MALDI-produced ions and fragment ions thereof produced in the mass spectrometer may be analyzed and detected by the Orbitrap analyzer at a maximum mass resolution of 100,000 (FWHM) at m/z 400 with high mass accuracy. An accuracy of ≤2 ppm is achieved by internal mass calibration using lock mass functionality; using external mass calibration, an accuracy of ≤3 ppm is routinely obtained. External mass calibration of the hybrid mass spectrometer is performed using a standard calibration mixture of different peptides and matrix components. The instrumental capabilities are demonstrated for analytical methodologies such as Protein ID using Peptide Mass Fingerprint (PMF) and MS/MS analyses of small molecule samples. Stability of mass accuracy and signal-to-noise ratio for low samples loads (on plates) are demonstrated as well as the experimental dynamic range using α-cyano-4-hydroxy cinnamic acid (CHCA) matrix.  相似文献   

8.
Sphingolipids have hydrophilic and hydrophobic properties, different saturation and combination of the oligosaccharide chains and mass homology of species located in a narrow m/z region hampering their recognition. To target sphingolipids for diagnostic purposes, standardized methods for lipid extraction, quali‐ and quantitative assessments are required. In this study, HPTLC‐MALDI MS was adopted to establish sphingolipid and glycosphingolipid profiles in muscle, brain and serum to create a database of molecules to be searched in the preclinical and clinical investigations. Specific protocols for lipid extraction were set up based on the characteristics of the tissue or/and fluids; this approach maximizes the HPTLC‐MALDI MS analytical throughput both for lipids extracted in organic and aqueous phase. This study indicates that alkaline hydrolysis is necessary for the detection of low abundant species such as Gb3Cer and ceramides in serum and Gb4Cer, CerP and HexCer in muscle tissue. The high hydrophobicity of ceramides has been overcome by the development of HPTLC plate in chloroform:methanol/50:3.5, which increases the number and the intensity of low abundant Cer species. MS/MS analysis has been conducted directly on HPTLC plate allowing the molecular recognition; furthermore a dataset of spectra was acquired to create a database for future profiling of these molecules.  相似文献   

9.
One of the newly developed imaging mass spectrometry (IMS) technologies utilizes matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to map proteins in thin tissue sections. In this study, we evaluated the power of MALDI IMS as we developed it in our (Bruker) MALDI TOF (Reflex IV) and TOF-TOF (Ultraflex II) systems to study myelin patterns in the mouse central nervous system under normal and pathological conditions. MALDI IMS was applied to assess myelin basic protein (MBP) isoform-specific profiles in different regions throughout the mouse brain. The distribution of ions of m/z 14,144 and 18,447 displayed a striking resemblance with white matter histology and were identified as MBP isoform 8 and 5, respectively. In addition, we demonstrated a significant reduction of the MBP-8 peak intensity upon MALDI IMS analysis of focal ethidium bromide-induced demyelinated brain areas. Our MS images were validated by immunohistochemistry using MBP antibodies. This study underscores the potential of MALDI IMS to study the contribution of MBP to demyelinating diseases.  相似文献   

10.
The spatial distribution of proteins in tissue sections can be used to identify potential markers for pathological processes. Tissue sections are often subjected to enzymatic digestion before matrix‐assisted laser desorption/ionization (MALDI) imaging. This study is targeted at improving the on‐tissue identification of tryptic peptides by accurate mass measurements and complementary off‐line liquid chromatography coupled to electrospray ionization tandem mass spectrometry (LC/ESI‐MS/MS) analysis. Two adjacent mouse brain sections were analyzed in parallel. The first section was spotted with trypsin and analyzed by MALDI imaging. Direct on‐tissue MS/MS experiments of this section resulted in the identification of 14 peptides (originating from 4 proteins). The second tissue section was homogenized, fractionated by ultracentrifugation and digested with trypsin prior to LC/ESI‐MS/MS analysis. The number of identified peptides was increased to 153 (corresponding to 106 proteins) by matching imaged mass peaks to peptides which were identified in these LC/ESI‐MS/MS experiments. All results (including MALDI imaging data) were based on accurate mass measurements (RMS <2 ppm) and allow a confident identification of tryptic peptides. Measurements based on lower accuracy would have led to ambiguous or misleading results. MS images of identified peptides were generated with a bin width (mass range used for image generation) of Δm/z = 0.01. The application of accurate mass measurements and additional LC/MS measurements increased both the quality and the number of peptide identifications. The advantages of this approach for the analysis of biological tissue sections are demonstrated and discussed in detail. Results indicate that accurate mass measurements are needed for confident identification and specific image generation of tryptic peptides in tissue sections. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
The MALDI-LTQ-Orbitrap XL mass spectrometer is a high performance instrument capable of high resolution and accurate mass (HRAM) measurements. The maximum m/z of 4000 precludes the MALDI analysis of proteins without generating multiply charged ions. Herein, we present the study of HRAM laserspray ionization mass spectrometry (MS) with MS/MS and MS imaging capabilities using 2-nitrophloroglucinol (2-NPG) as matrix on a MALDI-LTQ-Orbitrap XL mass spectrometer. The optimized conditions for multiply charged ion production have been determined and applied to tissue profiling and imaging. Biomolecules as large as 15 kDa have been detected with up to five positive charges at 100 K mass resolution (at m/z 400). More importantly, MS/MS and protein identification on multiply charged precursor ions from both standards and tissue samples have been achieved for the first time with an intermediate-pressure source. The initial results reported in this study highlight potential utilities of laserspray ionization MS analysis for simultaneous in situ protein identification, visualization, and characterization from complex tissue samples on a commercially available HRAM MALDI MS system. Graphical Abstract
?  相似文献   

12.
We report covalent attachment via a thiol ester linkage of 3,5-dimethoxy-4-hydroxycinnamic acid (sinapinic acid or SA) to cysteine-containing protein biomarkers from bacterial cell lysates of E. coli analyzed by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry when using SA as the matrix. Evidence to support this conclusion is the appearance of additional peaks in the MS spectra when using SA, which are absent when using α-cyano-4-hydroxycinnamic acid (HCCA). The additional peaks appear at a mass-to-charge (m/z) ∼208 greater to the m/z of a more abundant protein ion peak. Protein biomarkers were identified by tandem mass spectrometry (MS/MS) using a MALDI time-of-flight/time-of-flight (TOF-TOF) mass spectrometer and top-down proteomics. Three protein biomarkers, HdeA, HdeB, and homeobox or YbgS (each containing two cysteine residues) were identified as having reactivity to SA. Non-cysteine-containing protein biomarkers showed no evidence of reactivity to SA. MS ions and MS/MS fragment ions were consistent with covalent attachment of SA via a thiol ester linkage to the side-chain of cysteine residues. MS/MS of a protein biomarker ion with a covalently attached SA revealed fragment ion peaks suggesting dissociative loss SA. We propose dissociative loss of SA is facilitated by a pentacyclic transition-state followed by proton abstraction of the β-hydrogen of the bound SA by a sulfur lone pair followed by dissociative loss of 3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-ynal. The apparent reactivity of SA to cysteine/disulfide-containing proteins may complicate identification of such proteins, however the apparent differential reactivity of SA and HCCA toward cysteine/disulfide-containing proteins may be exploited for identification of unknown cysteine-containing proteins.  相似文献   

13.
Mass spectra of atactic polystyrene were collected into the mega-dalton mass range with a matrix-assisted laser desorption ionization time of flight (MALDI TOF) mass spectrometer, which incorporates a cryodetector comprised of an array of 16 superconducting tunnel junctions (STJ). The STJ cryodetector, theoretically, has no loss in signal response at any mass compared with the reduced signal found at high mass when using a conventional secondary-ionization detector. Since ion detection at high m/z is one of the fundamental limitations of mass spectrometry (MS), the cryodetector was used to explore the high m/z limit of the MALDI TOF technique for the analysis of two polymer types. Mass spectra were collected for polystyrene at Mn 170, 400, 900, and 2000 kDa and polymethyl methacrylate (PMMA) at Mn 62.6 kDa and 153.7 kDa. For polystyrene, the data showed a trend toward increased aggregation and charge state with mass. The Mn 2 MDa polystyrene data revealed a peak at m/z 2.2 MegaTh and a charge state analysis revealed that these ions were primarily polystyrene aggregates with a mass of approximately 4 MDa. This aggregate assignment was possible because the cryodetector response allows for the determination of a charge state up to about four. The contribution of each charge state for a selected peak can be determined in this fashion. This analysis revealed the preferential formation of doubly charged even-numbered aggregates over odd-numbered aggregates for high molecular mass polystyrene. A potential mechanism for the aggregation process for doubly charged species is discussed.  相似文献   

14.
Proteomic profiling involves identification and quantification of protein components in complex biological systems. Most of the mass profiling studies performed with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) have been restricted to peptides and small proteins (<20 kDa) because the sensitivity of the standard ion detectors decreases with increasing ion mass. Here we perform a protein profiling study of the snake venom Sistrurus miliarius barbouri, comparing 2D gel electrophoresis and reversed-phase high-performance liquid chromatography (HPLC) with a high mass cryodetector MALDI-TOF instrument (Macromizer), whose detector displays an uniform sensitivity with mass. Our results show that such MS approach can render superior analysis of protein complexity compared with that obtained with the electrophoretic and chromatographic approaches. The summation of ion impacts allows relative quantification of different proteins, and the number of ion counts correlates with the peak areas in the reversed-phase HPLC. Furthermore, the sensitivity reached with the high mass cryodetection MS technology clearly exceeds the detection limit of standard high-sensitivity staining methods.  相似文献   

15.
Mass spectrometry (MS) is a method of analyzing ions based on their mass/charge (m/z) ratios. The m/z peak identification requires speculation on the ionic unit‐charge states. This problem can be solved by using superconducting junction devices to measure the kinetic energies of single molecules. However, the kinetic energy measurement is followed by the dead time of 1–20 µs, which is fatally slow for modern high‐resolution time‐of‐flight (TOF) analyzers. In this paper, we demonstrate that a superconducting nano‐stripline detector (SSLD) composed of a 10‐nm‐thick and 800‐nm‐wide NbN strip realizes the charge‐state derivation, and furthermore satisfies the ideal MS detector specifications such as a nano‐second response, a short recovery time, a wide mass range, and no noise. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Mass spectrometry (MS) has been widely used for enzyme activity assays. Herein, we propose a MALDI‐MS patterning strategy for the convenient visual presentation of multiple enzyme activities with an easy‐to‐prepare chip. The array‐based caspase‐activity patterned chip (Casp‐PC) is fabricated by hydrophobically assembling different phospholipid‐tagged peptide substrates on a modified ITO slide. The advantages of amphipathic phospholipids lead to high‐quality mass spectra for imaging analysis. Upon the respective cleavage of these substrates by different caspases, such as caspase‐1, ‐2, ‐3, and ‐8, to produce a mass shift, the enzyme activities can be directly evaluated by MALDI‐MS patterning by m/z‐dependent imaging of the cleavage products. The ability to identify drug‐sensitive/resistant cancer cells and assess the curative effects of anticancer drugs is demonstrated, indicating the applicability of the method and the designed chip.  相似文献   

17.
The Escherichia coli single‐stranded DNA binding protein (SSB) selectively binds single‐stranded (ss) DNA and participates in the process of DNA replication, recombination and repair. Different binding modes have previously been observed in SSB?ssDNA complexes, due to the four potential binding sites of SSB. Here, chemical cross‐linking, combined with high‐mass matrix‐assisted laser desorption/ionization (MALDI) mass spectrometry (MS), is used to determine the stoichiometry of the SSB?ssDNA complex. SSB forms a stable homotetramer in solution, but only the monomeric species (m/z 19 100) can be detected with standard MALDI‐MS. With chemical cross‐linking, the quaternary structure of SSB is conserved, and the tetramer (m/z 79 500) was observed. We found that ssDNA also functions as a stabilizer to conserve the quaternary structure of SSB, as evidenced by the detection of a SSB?ssDNA complex at m/z 94 200 even in the absence of chemical cross‐linking. The stability of the SSB?ssDNA complex with MALDI strongly depends on the length and strand of oligonucleotides and the stoichiometry of the SSB?ssDNA complex, which could be attributed to electrostatic interactions that are enhanced in the gas phase. The key factor affecting the stoichiometry of the SSB?ssDNA complex is how ssDNA binds to SSB, rather than the protein‐to‐DNA ratio. This further suggests that detection of the complex by MALDI is a result of specific binding, and not due to non‐specific aggregation in the MALDI plume. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
The characteristics of matrix‐assisted laser desorption/ionization time‐of‐flight (MALDI‐TOF) mass spectrometry based investigation of extremely variable bacteria such as Helicobacter pylori were studied. H. pylori possesses a very high natural variability. Accurate tools for species identification and epidemiological characterization could help the scientific community to better understand the transmission pathways and virulence mechanisms of these bacteria. Seventeen clinical as well as two laboratory strains of H. pylori were analyzed by the MALDI Biotyper method for rapid species identification. Mass spectra collected were found containing 7–13 significant peaks per sample, and only six protein signals were identical for more than half of the strains. Four of them could be assigned to ribosomal proteins RL32, RL33, RL34, and RL36. The reproducible peak with m/z 6948 was identified as a histidine‐rich metal‐binding polypeptide by tandem mass spectrometry (MS/MS). In spite of the evident protein heterogeneity of H. pylori the mass spectra collected for a particular strain under several cultivations were highly reproducible. Moreover, all clinical strains were perfectly identified as H. pylori species through comparative analysis using the MALDI Biotyper software (Bruker Daltonics, Germany) by pattern matching against a database containing mass spectra from different microbial strains (n = 3287) including H. pylori 26695 and J99. The results of this study allow the conclusion that the MALDI‐TOF direct bacterial profiling is suited for H. pylori identification and could be supported by mass spectra fragmentation of the observed polypeptide if necessary. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
As an alternative method, matrix-assisted laser desorption/ionization with Fourier transform mass spectrometry (MALDI-FTMS) has been successfully used to detect and identify free radical adducts with small molecular weights of hydroxyl and 2-cyano-2-propyl radicals trapped with 5,5-dimethylpyrroline N-oxide (DMPO). The detection and identification by MS/MS experiments using sustained offresonance irradiation collision-induced dissociation (SORI-CID) of [(DMPO+·OH-·H)+H^+] (m/z 130.0868) and [DMPO+2 ·CH(CH3)2CN+H^+] (m/z 250.1917) have demonstrated that MALDI-FTMS could be an effective method for detection and identification of free radical adducts. Other radical adducts have been also detected and identified. The approach of MALDI-FTMS is simple, fast, and sensitive which has potential for high-throughput analysis.  相似文献   

20.
A mixture of a UV absorber (Tinuvin 234 or Tinuvin 329) and a UV stabilizer (Tinuvin 770) was analyzed using matrix‐assisted laser desorption/ionization mass spectrometry (MALDI‐MS) without any matrix. Fragmentation patterns of the UV absorbers and stabilizer were also investigated. The mass spectra showed the [M+H]+ ions and some fragment ions. Tinuvin 234, Tinuvin 329, and Tinuvin 770 generated three (m/z 119, 370, 432), one (m/z 252), and two (m/z 124 and 140) fragment ions, repectively. These fragment ions can be used to identify the chemical structures of the UV absorbers and stabilizer. Since the UV absorber performed a role as the matrix, the ion abundance of the UV stabilizer was enhanced by mixing with the UV absorber. When organic materials extracted from polypropylene (PP) containing the UV absorber and stabilizer were directly analyzed using MALDI‐MS without any matrix, the protonated molecule of the UV stabilizer was detected in abundance but the product ions of the UV absorber were not observed. When 2,5‐dihydroxybenzoic acid was used as a matrix, the protonated molecule of the UV absorber was observed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号