首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Cytochrome c (Cyt-c) was electrostatically immobilised on Ag electrodes coated with self-assembled monolayers (SAM) that are formed by omega-carboxyl alkanethiols with different alkyl chain lengths (C(x)). Surface enhanced resonance Raman (SERR) spectroscopy demonstrated that electrostatic binding does not lead to conformational changes of the heme protein under the conditions of the present experiments. Employing time-resolved SERR spectroscopy, the rate constants of the heterogeneous electron transfer (ET) between the adsorbed Cyt-c and the Ag electrode were determined for a driving force of zero electronvolts. For SAMs with long alkyl chains (C(16), C(11)), the rate constants display a normal exponential distance dependence, whereas for shorter chain lengths (C(6), C(3), C(3)), the ET rate constant approaches a constant value (ca. 130 s(-1)). The onset of the non-exponential distance-dependence is paralleled by an increasing kinetic H/D effect, indicating a coupling of the redox reaction with proton transfer (PT) steps. This unusual kinetic behaviour is attributed to the effect of the electric field at the Ag/SAM interface that increasingly raises the energy barrier for the PT processes with decreasing distance of the adsorbed Cyt-c from the electrode. The distance-dependence of the electric field strength is estimated on the basis of a simple electrostatic model that can consistently describe the redox potential shifts of Cyt-c as determined by stationary SERR spectroscopy for the various SAMs. At low electric fields, PT is sufficiently fast so that rate constants, determined as a function of the driving force, yield the reorganisation energy (0.217 electronvolts) of the heterogeneous ET.  相似文献   

2.
3.
The growth, morphology, and interaction/adhesion properties of supported poly(sodium 4-styrenesulfonate)/poly(allylamine hydrochloride) (PSS/PAH) and DNA/PAH multilayers were investigated by means of surface plasmon resonance spectroscopy, atomic force microscope (AFM) imaging, and AFM-related force measurements. Multilayers were assembled on a prelayer of poly(ethylenimine) (PEI) both with and without drying. SPR results showed a linear growth of the assembly in the case of PSS/PAH multilayers and nonlinear growth for DNA/PAH multilayers. Measurements of forces acting between a bare glass sphere and a multilayer-coated surface indicated repulsive or attractive forces, depending on surface charge, which suggests that, on approach, electrostatic forces dominate. On separation, we observed large pull-off forces in the case of positively charged multilayers and weak pull-off forces in the case negatively charged multilayers. Multiple adhesions and plateau regions observed on separation were interpreted in terms of a bridging of multiple polymer chains between the glass particle and the multilayer and a stretching of the polyelectrolyte loops. The dependence of the pull-off force on the number of deposited layers shows regular oscillations.  相似文献   

4.
Cytochrome c (Cyt-c) was electrostatically bound to self-assembled monolayers (SAM) on an Ag electrode, which are formed by omega-carboxyl alkanethiols of different chain lengths (C(x)). The dynamics of the electron-transfer (ET) reaction of the adsorbed heme protein, initiated by a rapid potential jump to the redox potential, was monitored by time-resolved surface enhanced resonance Raman (SERR) spectroscopy. Under conditions of the present experiments, only the reduced and oxidized forms of the native protein state contribute to the SERR spectra. Thus, the data obtained from the spectra were described by a one-step relaxation process yielding the rate constants of the ET between the adsorbed Cyt-c and the electrode for a driving force of zero electronvolts. For C(16)- and C(11)-SAMs, the respective rate constants of 0.073 and 43 s(-1) correspond to an exponential distance dependence of the ET (beta = 1.28 A(-1)), very similar to that observed for long-range intramolecular ET of redox proteins. Upon further decreasing the chain length, the rate constant only slightly increases to 134 s(-1) at C(6)- and remains essentially unchanged at C(3)- and C(2)-SAMs. The onset of the nonexponential distance dependence is paralleled by a kinetic H/D effect that increases from 1.2 at C(6)- to 4.0 at C(2)-coatings, indicating a coupling of the redox reaction with proton-transfer (PT) steps. These PT processes are attributed to the rearrangement of the hydrogen-bonding network of the protein associated with the transition between the oxidized and reduced state of Cyt-c. Since this unusual kinetic behavior has not been observed for electron-transferring proteins in solution, it is concluded that at the Ag/SAM interface the energy barrier for the PT processes of the adsorbed Cyt-c is raised by the electric field. This effect increases upon reducing the distance to the electrode, until nuclear tunneling becomes the rate-limiting step of the redox process. The electric field dependence of the proton-coupled ET may represent a possible mechanism for controlling biological redox reactions via changes of the transmembrane potential.  相似文献   

5.
The influence of a first (anchoring) layer and film treatment on the structure and properties of polyelectrolyte multilayer (PEM) films obtained from polyallylamine hydrochloride (PAH) and polysodium 4-styrenesulfonate (PSS) was studied. Branched polyethyleneimine (PEI) was used as an anchoring layer. The film thickness was measured by ellipsometry. Complementary X-ray reflectometry and AFM experiments were performed to study the change in the interfacial roughness. We found that the thickness of the PEM films increased linearly with the number of layers and depended on the presence of an anchoring PEI layer. Thicker films were obtained for multilayers having PEI as the first layer comparing to films having the same number of layers but consisting of PAH/PSS only. We investigated the wettability of PEM surfaces using direct image analysis of the shape of sessile water drops. Periodic oscillations in contact angle were observed. PAH-terminated films were more hydrophobic than films with PSS as the outermost layer. The effect of long time conditioning of PEM films in solutions of various pH's or salt (NaCl) concentrations was also examined. Salt or base solutions induced modification in wetting properties of the polyelectrolyte multilayers but had a negligible effect on the film thickness.  相似文献   

6.
Prussian blue (PB) nanoparticles were immobilized in polyelectrolyte (PE) multilayers of various compositions and thickness. Films containing nanoparticles and poly(allylamine hydrochloride) (PAH) were formed using the layer-by-layer adsorption method. A layer of branched poly(ethyleneimine) (PEI) was used to anchor the multilayer structure at the surface of a gold electrode. The films exhibited electroactive properties, increasing with the number of deposited PB layers. The properties of PEI/(PB/PAH) n multilayers were then compared with the ones containing additionally the conductive polymer poly(3,4-ethylenedioxythiophene)–poly(styrenesulfonate) (PEDOT:PSS). We found that the addition of the conductive, water-soluble polymer enhances the electroactive properties of the multilayer films. It also increased sensitivity of the multilayer-covered electrodes for electrochemical detection of hydrogen peroxide.  相似文献   

7.
Novel protein core-shell nanocluster films were assembled layer by layer on solid surfaces. In the first step, positively charged heme protein hemoglobin (Hb) or myoglobin (Mb) and negatively charged poly(styrenesulfonate) (PSS) were alternately adsorbed on the surface of SiO2 nanoparticles, forming core-shell SiO2-(protein/PSS)m nanoclusters. In the second step, the SiO2-(protein/PSS)m nanoclusters and polycationic poly(ethylenimine) (PEI) were assembled layer by layer on various solid substrates, forming [[SiO2-(protein/PSS)m]/PEI]n films. Various techniques were used to characterize the nanoclusters and monitor the film growth. [[SiO2-(protein/PSS)m]/PEI]n films at pyrolytic graphite (PG) electrodes exhibited well-defined, chemically reversible cyclic voltammetric reduction-oxidation peaks characteristic of the heme Fe(III)/Fe(II) redox couples. The proteins in the films retained near native conformations in the medium pH range, and the films catalyzed electrochemical reduction of oxygen and hydrogen peroxide. Advantages of the nanocluster films over the simple [SiO2/protein]n layer-by-layer films include a larger fraction of electroactive protein and higher specific biocatalytic activity. Using this approach, biocatalytic activity can be tailored and controlled by varying the number of bilayers deposited on the nanoparticle cores and the number of nanocluster layers on electrodes.  相似文献   

8.
Attenuated total internal reflectance Fourier transform infrared, ATR-FTIR, spectroscopy was used to compare the water uptake and doping within polyelectrolyte multilayers made from poly(styrene sulfonate), PSS, and a polycation, either poly(allylamine hydrochloride), PAH, or poly(diallyldimethylammonium chloride), PDADMAC. Unlike PDADMA/PSS multilayers, whose water content depended on the solution ionic strength, PAH/PSS multilayers were resistant to doping by NaCl to a concentration of 1.2 M. Using (infrared active) perchlorate salt, the fraction of residual counterions in PDADMA/PSS and PAH/PSS was determined to be 3% and 6%, respectively. The free energy of association between the polymer segments, in the presence of NaClO4, was about 5 kJ mol-1 and -10 kJ mol-1, respectively, for PDADMA/PSS and PAH/PSS, indicating the relatively strong association between the polymer segments in the latter relative to the former. Varying the pH of the solution in contact with the PAH/PSS multilayer revealed a transition to a highly swollen state, interpreted to signal protonation of PAH under much more basic conditions than the pKa of the solution polymer. The increase in the multilayer pKa suggested an interaction energy for PAH/PSS in NaCl of ca. 16 kJ mol-1.  相似文献   

9.
Molecular recognition and electrostatic interaction of oppositely charged polyelectrolytes are combined in the fabrication of ultrathin metallosupramolecular multilayers [shown schematically in the picture, PEI=polyethyleneimine, PSS=poly(styrene sulfonate)]. The layers between the PSS layers are composed of an iron(II ) bis(terpyridine) coordination polymer.  相似文献   

10.
The quartz crystal microbalance with dissipation technique (QCM‐D) and atomic force microscopy (AFM) have been employed to study the interaction of N‐tetradecyl trimethyl ammonium bromide (TdTmAB) with polyelectrolyte multilayers containing poly(sodium 4‐styrene sulfonate) (PSS) as the polyanion and either poly(allylamine hydrochloride) (PAH) or poly(diallyl dimethyl ammonium chloride) (PDADMAC) as the polycations. The multilayers were exposed to aqueous solutions of TdTmAB. This resulted in a selective removal of PDADMAC PSS layers while layers with PAH as polycation remained stable. It is suggested that PDADMAC/PSS multilayers can be employed as strippable protecting layers.

  相似文献   


11.
Simultaneous spraying of two solutions of interacting species onto a substrate held vertically leads to the formation of nanometer-sized coatings. Here we investigate the simultaneous spraying of poly(styrene sulfonate) (PSS) and poly(allylamine hydrochloride) (PAH) solutions leading to the formation of a film composed of PSS/PAH complexes. The thickness of this film increases linearly with the cumulative spraying time. For a given spraying rate of PAH (respectively PSS), the growth rate of the film depends strongly upon the PSS/PAH ratio and passes through a maximum for a PSS/PAH ratio lying between 0.55 and 0.8. For a PSS/PAH ratio that is maintained constant, the growth speed of the film increases linearly with the spraying rate of polyelectrolyte of both solutions. Using X-ray photoelectron spectroscopy, we find that the film composition is almost independent of the PSS/PAH (spayed) ratio, with composition very close to 1:1 in PSS:PAH film. The 1:1 PSS:PAH composition is explained by the fact that the simultaneous spraying experiments are carried out with salt-free solutions; thus, electroneutrality in the film requires exact matching of the charges carried by the polyanions and the polycations. Zeta potential measurements reveal that, depending on whether the PSS/PAH spraying rate ratio lies below or above the optimal spraying rate ratio, the film acquires a positive or a negative excess charge. We also find that the overall film morphology, investigated by AFM, is independent of the spraying rate ratio and appears to be composed of nanometer-sized grains which are typically in the 100 nm range.  相似文献   

12.
Multilayer films consisting of carboxymethylcellulose (CMC) and ferrocene‐modified poly(ethyleneimine) (Fc‐PEI) or poly(allylamine hydrochloride) (Fc‐PAH) were successfully prepared on a gold electrode to examine their redox properties. The redox current of (Fc‐PEI/CMC)n film‐coated electrodes increased with the number of layers, while the (Fc‐PAH/CMC)n film‐coated electrodes exhibited increased response only for the first eight bilayers. The (Fc‐PEI/CMC)n and (Fc‐PAH/CMC)n films deposited on the surface of Fc‐free multilayer film‐coated electrodes also showed a redox response. The (PEI/CMC)5 film‐coated electrode showed redox responses in Fc‐PEI and Fc‐PAH solutions, confirming the uptake of the Fc‐polymers in the inner film. In contrast, the uptake of the Fc‐polymers in the (PAH/CMC)5 film was severely suppressed, suggesting that different permeability of (PEI/CMC)5 and (PAH/CMC)5 films.  相似文献   

13.
We report the investigation of surface forces between polyelectrolyte multilayers of poly(allylamine hydrochloride) (PAH) and poly(styrenesulfonate sodium salt) (PSS) assembled on mica surfaces during film buildup using a surface force apparatus. Up to four polyelectrolyte layers were prepared on each surface ex situ, and the surface interactions were measured in 10(-4) M KBr solutions. The film thickness under high compressive loads (above 2000 microN/m) increased linearly with the number of deposited layers. In all cases, the interaction between identical surfaces at large separations (>100 A from contact) was dominated by electrostatic double-layer repulsion. By fitting DLVO theory to the experimental force curves, the apparent double-layer potential of the interacting surfaces was calculated. At shorter separations, an additional non-DLVO repulsion was present due to polyelectrolyte chains extending some distance from the surface into solution, thus generating an electrosteric type of repulsion. Forces between dissimilar multilayers (i.e., one of the multilayers terminated with PSS and the other with PAH) were attractive at large separations (30-400 A) owing to a combination of electrostatic attraction and polyelectrolyte bridging.  相似文献   

14.
Temperature- and pH-sensitive poly(N-isopropylacrylamide)?Cco-acrylic acid (pNIPAm-co-AAc) microgels were deposited on glass substrates coated with polyelectrolyte multilayers composed of the polycation poly(allylamine hydrochloride) (PAH) and the polyanion poly(sodium 4-styrenesulfonate) (PSS). The microgel density and structure of the resultant films were investigated as a function of: (1) the number of PAH/PSS layers (layer thickness); (2) the charge on the outer layer of the polyelectrolyte multilayer film; and (3) the pH of microgel deposition solution. The resultant films were studied by differential interference contrast optical microscopy, atomic force microscopy, and scanning electron microscopy. It was found that the coverage of the microgels on the surface was a complex function of the pH of the deposition solution, the charge on the outer layer of the polyelectrolyte thin film and the PAH/PSS layer thickness; although it appears that microgel charge plays the biggest role in determining the resultant surface coverage.  相似文献   

15.
We report the preparation, characterization, and mechanical properties of polyelectrolyte/phosphorus dendrimer multilayer microcapsules. The shells of these microcapsules are composed either by alternating poly(styrenesulfonate) (PSS) and positively charged dendrimer G4(NH+Et2Cl-)96 or by alternating poly(allylamine hydrochloride) (PAH) and negatively charged dendrimer G4(CH-COO-Na+)96. The same multilayers were constructed on planar support to examine their layer-by-layer growth and to measure the multilayer thickness. Surface plasmon resonance spectroscopy (SPR) showed regular linear growth of the assembly upon each bilayer deposited. We probe the mechanical properties of these polyelectrolyte/dendrimer microcapsules by measuring force-deformation curves with the atomic force microscope (AFM). The experiment suggests that they are much softer than PSS/PAH microcapsules studied before. This softening is attributed to an enhanced permeability of the polyelectrolyte/dendrimer multilayer shells as compared with multilayers formed by linear polyelectrolytes. In contrast, Young's modulus of both dendrimer-based multilayers was found to be on the same order as that of PSS/PAH multilayers.  相似文献   

16.
An efficient method for characterizing wetting properties of heterogeneous surfaces produced by sequential adsorption of polyelectrolytes was developed. Three types of polyelectrolytes were used: polyallylamine hydrochloride (PAH), polyethyleneimine (PEI), both of a cationic type, and polysodium 4-styrenesulfonate (PSS), of an anionic type. Multilayer films were prepared by 'layer-by-layer' (LbL) deposition technique. Natural ruby mica, glass, titanium foil and silicon wafers were used as the support material for PE films. Wetting of polyelectrolyte films was determined experimentally by contact angle measurements, using technique of direct image analysis of shape of sessile drops. Periodic oscillations in contact angle values were observed for multilayers terminated by polycation and polyanion, respectively, and the variations in contact angle values strongly depended on the conditions of adsorption and multilayer treatment after deposition. Therefore, the influence of ionic strength of polyelectrolyte solution used for deposition on wetting of multilayer films was considered and also the effect of conditioning in different environments was investigated. It is usually assumed that film properties and stability strongly depend on the first layer which is used to anchor a multilayer at the surface of support material. To investigate influence of the first layer, PAH/PSS films were compared with more complex ones having PEI as the first layer with a sequence of PSS/PAH deposited on top of it.  相似文献   

17.
The binding of immunogloblulins (IgG) (mouse monoclonal recognizing IFNγ) on precoated polystyrene or silica surfaces by the layer-by-layer technique has been investigated with QCM-D and DPI. The aim of the work was to increase the sensitivity of the conventional enzyme-linked immunosorbent spot (ELISpot) assay. The polyelectrolytes used to build the multilayers were poly(allylamine hydrochloride) (PAH)/poly(sodium 4-styrenesulfonate) (PSS) alternately adsorbed from 150mM NaCl. The multilayer build up is linear and the internal structure of the PAH/PSS multilayer is compact and rigid as observed by low relative water content (20-25%) and high layer refractive index (n~1.5) after the formation of five bilayers. Incorporation of IgG within the PAH/PSS multilayer did not give rise to overcharging and did not affect the linear build up. ELISpot test on PAH/PSS multilayer modified polystyrene wells showed that the cytokine response was significantly smaller than on the regular PVDF backed polystyrene wells. This may be due to the compact and rigid nature of the PAH/PSS multilayer, which does not allow formation of the kind of three dimensional support needed to achieve bioactive IgG binding to the surface. Immunological tests of the polyelectrolyte multilayers in the absence of IgG showed that PSS terminated PAH/PSS multilayer did not induce any cytokine response whereas PAH terminated did, which suggests that PSS totally covers the surface from the cells point of view.  相似文献   

18.
Multilayer thin films were constructed on polystyrene colloidal particles by depositing alternating layers of poly(allylamine hydrochloride) (PAH) at pH 7.5 and varying composition blends of poly(acrylic acid) (PAA) and poly(styrenesulfonate) (PSS) at pH 3.5. Following the deposition of each layer, microelectrophoresis experiments showed alternating zeta-potentials, suggesting the formation of multilayered films on the particles. Scanning and transmission electron microscopy were used to examine the surface morphology of the colloidal particles, with homogeneous surface coatings apparent for films deposited from PAA/PSS blend solutions containing up to 90 wt % PAA. The colloidal stability of these particles is greater than those coated with individual PAH and PAA layers. In the case of the blend PAA/PSS = 25:75 wt %, up to 20 layers were assembled without compromising the colloidal stability of the dispersion. The results demonstrate that the deposition of layers from PE blend solutions containing a strong and weak PE can be used as a facile method for controlling the surface properties and hence the colloidal stability of core-shell particles, as well as the thickness and morphology of the coatings. Control of these parameters is important for subsequent processing and application of these particles in controlled delivery, photonics, catalytic, and separation applications.  相似文献   

19.
On the basis of rational design principles, template-assisted four-helix-bundle proteins that include two histidines for coordinative binding of a heme were synthesized. Spectroscopic and thermodynamic characterization of the proteins in solution reveals the expected bis-histidine coordinated heme configuration. The proteins possess different binding domains on the top surfaces of the bundles to allow for electrostatic, covalent, and hydrophobic binding to metal electrodes. Electrostatic immobilization was achieved for proteins with lysine-rich binding domains (MOP-P) that adsorb to electrodes covered by self-assembled monolayers of mercaptopropionic acid, whereas cysteamine-based monolayers were employed for covalent attachment of proteins with cysteine residues in the binding domain (MOP-C). Immobilized proteins were studied by surface-enhanced resonance Raman (SERR) spectroscopy and electrochemical methods. For all proteins, immobilization causes a decrease in protein stability and a loosening of the helix packing, as reflected by a partial dissociation of a histidine ligand in the ferrous state and very low redox potentials. For the covalently attached MOP-C, the overall interfacial redox process involves the coupling of electron transfer and heme ligand dissociation, which was analyzed by time-resolved SERR spectroscopy. Electron transfer was found to be significantly slower for the mono-histidine-coordinated than for the bis-histidine-coordinated heme. For the latter, the formal heterogeneous electron-transfer rate constant of 13 s(-1) is similar to those reported for natural heme proteins with comparable electron-transfer distances, which indicates that covalently bound synthetic heme proteins provide efficient electronic communication with a metal electrode as a prerequisite for potential biotechnological applications.  相似文献   

20.
We have investigated polyelectrolyte multilayers of poly(styrene sulfonate) (PSS) and poly(allylamine hydrochloride) in contact with D2O by neutron reflectometry. The study particularly focuses on the changes in the solvent fraction of the system upon addition of a layer. When the layers are deposited at a low salt concentration (0.25 M NaCl), no significant changes in the solvent fraction are detected. In contrast, at a larger salt concentration (1 M NaCl), oscillations in the solvent fraction are detected when a new layer is deposited. In this case, addition of PSS systematically increases the solvent volume fraction, and addition of PAH decreases the solvent fraction. The results suggest that one of the parameters driving the oscillations in solvent fraction is the uncompensated charges present in the layers. This study opens new perspectives on results previously published by other authors: in addition to polymer desorption, water uptake or release might contribute to the different regimes of multilayer growth reported in the literature (linear, asymmetric, or exponential growth). In addition, comparison to NMR results previously reported allows for conclusions about the mobility of the solvent in the multilayers: the average rotational correlation time of the water molecules in the polyelectrolyte layers decreases upon addition of PSS and increases upon addition of PAH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号