首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ANEXACTSOLUTIONONTHESTRESSANALYSISOFFILIETWELDSXueDawei(薛大为)(ReceivedMarch1.1995)AbstractAnexactsolutiononthestressdistributi...  相似文献   

2.
An exact solution on the stress distribution of fillet welds is obtained in this paper. This solution can be used not only for estimating the accuracy of the present design method of fillet welds but also for establishing a new design method.  相似文献   

3.
焊接残余应力是引起应力腐蚀开裂的主要原因,准确地掌握残余应力的分布是对结构完整性评定的关键.为了探明反应堆压力容器顶盖控制棒驱动机构(control rod drive mechanism,CRDM)贯穿件J形焊缝残余应力的分布,本研究加工两个CRDM贯穿件实验模拟件,采用盲孔法测试两个J形接头的焊接残余应力.通过实验探明了CRDM贯穿件焊缝残余应力的分布规律,为反应堆压力容器结构完整性的研究提供必要参考.  相似文献   

4.
The circumferential failure mode of spot welds is investigated under combined loading conditions. Failure mechanisms of spot welds under different loading conditions are first examined by the experimental observations and a plane stress finite element analysis. An approximate limit load analysis for spot welds is then conducted to understand the failure loads of spot welds under combinations of resultant forces and resultant moments with consideration of the global equilibrium conditions only. The approximate limit load solution for circumferential failure is expressed in terms of sheet thickness, nugget diameter and combinations of loads. Failure contours are generated for spot welds under opening and shear loading conditions. The results indicate that failure contours become smaller when the ratio of the sheet thickness to the nugget diameter increases. Based on the approximate limit load solution, a general quadratic failure criterion for spot welds under combined three resultant forces and three resultant moments is proposed with correction factors determined by fitting to the experimental results of spot welds under combined loading conditions. The failure criterion can be used to characterize the failure loads of spot welds with consideration of the effects of sheet thickness, nugget diameter and combinations of loads. Experimental spot weld failure loads under combined opening and shear loading conditions and those under combined shear and twisting loading conditions are shown to be characterized well by the proposed failure criterion. Finally, a simplified general failure criterion for spot welds under three resultant forces and three resultant moments is proposed by neglecting the coupling terms of the resultant forces and moments for convenient use of the failure criterion for engineering applications.  相似文献   

5.
Relations are proposed for the determination of the stress-strain state, strength, and life of butt welds with mild and hard interlayers under cyclic elastoplastic tension-compression. The accumulation of cyclic and quasistatic damages is determined with allowance for the redistribution of the cyclic elastoplastic strains and hardness of the stress state due to changes in the cyclic properties of separate regions of welds. The theoretical distribution of cyclic strains and the durability of welds under cyclic elastoplastic loading are supported by experimental data __________ Translated from Prikladnaya Mekhanika, Vol. 44, No. 2, pp. 29–38, February 2008.  相似文献   

6.
A problem on the forced vibrations of a rectangular composite plate with locally curved structures is formulated using the exact three-dimensional equations of continuum mechanics and continuum theory. A technique for numerical solution of the problem is developed based on the semianalytic finite-element method. Numerical results are given for the stress distribution in the plate under forced vibrations. The results obtained are analyzed to study the effect of the curvature in the structure of the plate on the distribution of stress amplitudes. It is shown that the curvatures change significantly the stress pattern under either static or dynamic loading  相似文献   

7.
We present an exact solution for the problem in elasticity theory of a transversely Isotropic body containing an elliptical inclusion. We assume that the tensile stresses act at a distance sufficiently far away from the inclusion, along the axes of the ellipse and perpendicular to the plane of the ellipse. We find that two fracture mechanisms are possible under the action of the type of force under consideration: detachment of the material from the inclusion, and fracture near the stress concentrator. We obtain formulas for the stress intensity factors for each case.  相似文献   

8.
吴迪  赵宝生 《应用力学学报》2012,29(4):349-352,481
为了得到精确的应力场、位移场、温度场,将扭转圆轴的精化理论研究方法推广到轴对称横观各向同性热弹性圆柱。利用Bessel函数以及轴对称横观各向同性热弹性圆柱的通解,给出了轴对称横观各向同性热弹性圆柱的分解定理。根据柱面齐次边界条件获得了精确的精化方程,精化方程可以分解为一阶方程、超越方程、温度方程,从而将横观各向同性热弹性圆柱的轴对称问题分解为轴向拉压问题、超越问题、热-应力耦合问题。超越部分对应端部自平衡情况,可以清晰地了解到端部应力分布对内部应力场的影响,热-应力耦合部分对应无外加应力场时圆柱内部因温度变化引起的热应力。  相似文献   

9.
In this paper, the stress intensity factor solutions for spot welds in lap-shear specimens are investigated by finite element analyses. Three-dimensional finite element models are developed for lap-shear specimens to obtain accurate stress intensity factor solutions. In contrast to the existing investigations of the stress intensity factor solutions based on the finite element analyses, various ratios of the sheet thickness, the half specimen width, the overlap length, and the specimen length to the nugget radius are considered in this investigation. The computational results confirm the functional dependence on the nugget radius and sheet thickness of the stress intensity factor solutions of [Zhang, S., 1997. Stress intensities at spot welds. International Journal of Fracture 88, 167–185; Zhang, S., 1999. Approximate stress intensity factors and notch stresses for common spot-welded specimens. Welding Journal 78, 173s–179s]. The computational results provide some geometric functions in terms of the normalized specimen width, the normalized overlap length, and the normalized specimen length to the stress intensity factor solutions of [Zhang, S., 1997. Stress intensities at spot welds. International Journal of Fracture 88, 167–185; Zhang, S., 1999. Approximate stress intensity factors and notch stresses for common spot-welded specimens. Welding Journal 78, 173s–179s] for lap-shear specimens. The computational results also indicate that when the spacing between spot welds decreases, the mode I stress intensity factor solution at the critical locations increases and the mode mixture of the stress intensity factors changes consequently. Finally, based on the analytical and computational results, the dimensions of lap-shear specimens and the corresponding approximate stress intensity factor solutions are suggested.  相似文献   

10.
This paper deals with finite deformation problems of cantilever beam with variable section under the action of arbitrary transverse loads. By the use of a method of variable replacement, the nonlinear differential equation with varied coefficient for the problem can be transformed into an equation with variable separable. The exact solution can be obtained by the integration method. Some examples are given in the paper, and the results of these examples show that this exact solution includes the existing solutions in references as special cases. Projects Supported by the Science Foundation of the Chinese Academy of Sciences.  相似文献   

11.
This paper gives the exact solution of large deflection of circular sandwich plate under the action of uniform lateral load by the method of power series. Making use of this solution, we can judge the accuracy of Liu Ren-huai’s(4) analytic solution obtained by means of the modified iteration method. This indicates that the previous solution has very satisfactory accuracy.  相似文献   

12.
A state-space approach for exact analysis of axisymmetric deformation and stress distribution in a circular cylindrical body of transversely isotropic material is developed. By means of Hamiltonian variational formulation via Legendre’s transformation, the basic equations in cylindrical coordinates are formulated into a state-space framework in which the unknown state vector comprises the displacements and associated stress components as the dual variables and the system matrix possesses the symplectic characteristics of a Hamiltonian system. Upon delineating the symplecticity of the formulation, a viable solution approach using eigenfunction expansion is developed. For illustration, an exact analysis of a finite thick-walled circular cylinder under internal and external pressures is presented, with emphasis on the end effects.  相似文献   

13.
The elastic stress state in a piezoelectric body with an arbitrarily oriented elliptic crack under mechanical and electric loads is analyzed. The solution is obtained using triple Fourier transform and the Fourier-transformed Green’s function for an unbounded piezoelastic body. Solving the problem for the case of a crack lying in the isotropy plane, for which there is an exact solution, demonstrates that the approach is highly efficient. The distribution of the stress intensity factors along the front of a crack in a piezoelectric body under uniform mechanical loading is analyzed numerically for different orientations of the crack __________ Translated from Prikladnaya Mekhanika, Vol. 44, No. 2, pp. 39–48, February 2008.  相似文献   

14.
The analytical solutions of the mode I stress intensity factor for spot welds in lap-shear specimens are investigated based on the classical Kirchhoff plate theory for linear elastic materials. First, closed-form solutions for an infinite plate containing a rigid inclusion under counter bending conditions are derived. The development of the closed-form solutions is then used as a guide to develop approximate closed-form solutions for a finite square plate containing a rigid inclusion under counter bending conditions. Based on the J integral, the closed-form solutions are used to develop the analytical solutions of the mode I stress intensity factor for spot welds in lap-shear specimens of large and finite sizes. The analytical solutions of the mode I stress intensity factor based on the solutions for infinite and finite square plates with an inclusion are compared with the results of the three-dimensional finite element computations of lap-shear specimens with various ratios of the specimen half width to the nugget radius. The results indicate that the mode I stress intensity factor solution based on the finite square plate model with an inclusion agrees well with the computational results for lap-shear specimens for the ratio of the half specimen width to the nugget radius between 4 and 15. Finally, a set of the closed-form stress intensity factor solutions for lap-shear specimens at the critical locations are proposed for future applications.  相似文献   

15.
An interfacial crack with electrically permeable surfaces between two dissimilar piezoelectric ceramics under electromechanical loading is investigated. An exact expression for singular stress and electric fields near the tip of a permeable crack between two dissimilar anisotropic piezoelectric media are obtained. The interfacial crack-tip fields are shown to consist of both an inverse square root singularity and a pair of oscillatory singularities. It is found that the singular fields near the permeable interfacial crack tip are uniquely characterized by the real valued stress intensity factors proposed in this paper. The energy release rate is obtained in terms of the stress intensity factors. The exact solution of stress and electric fields for a finite interfacial crack problem is also derived.  相似文献   

16.
In this paper, problems of buckling of an annular thin plate under the action of in-plane pressure and transverse load are studied by using the method of multiple scales. We obtain N-order uniformly valid asymptotic expansion of the solution. In the latter part of this paper we discuss a particular example, and calculate the critical value of in-plane pressure. We see that the asymptotic expansion obtained by the multiple scales is completely consistent with that of the exact solution.  相似文献   

17.
This paper presents the exact stress solution of the non-associative Drucker–Prager elastoplastic model governed by linear isotropic hardening rule. The stress integration is performed under constant strain-rate assumption and the derived formulas are valid in the setting of small strain elastoplasticity theory. Based on the time-continuous stress solution, a complete discretized stress updating algorithm is also presented providing the solutions for the special cases when the initial stress state is located in the apex and when the increment produces a stress path through the apex. Explicit expression for the algorithmically consistent tangent tensor is also derived. In addition, a fully analytical strain solution is also derived for the stress-driven case using constant stress-rate assumption. In order to get a deeper understanding of the features of these solutions, two numerical test examples are also presented.  相似文献   

18.
We consider the plane stress state used in the analysis of strains of thin bodies. Methods for solving problems under the assumption that three out of six components of the stress tensor are zero can be found in [1–3].In the present paper, the strain of a perfect rigid-plastic medium in the plane stress state is studied in curvilinear orthogonal coordinates. We show that in any coordinate system there exists an exact solution for which the stresses depend only on the metric function.  相似文献   

19.
20.
In this paper, we show that a three-phase elliptic inclusion under uniform remote stress and eigenstrain in anti-plane shear admits an internal uniform stress field provided that the interfaces are two confocal ellipses. The exact closed-form solution is used to quantify the effect of the interphase layer on the residual stresses within the inclusion and the dependency of this effect on the aspect ratio of the elliptic inclusion. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号