首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present the exact solution of the simplified Hubbard model in which only one kind of electrons can hop and this quantum mechanical hopping of electrons is assumed to be unconstrained. It is shown that the model still behaves nontrivially, although it no longer depends on the lattice structure and the dimensionality of the system. For this case we find: (i) a gap in the ground state energy always exists at the half-filled band point (n=1), (ii) a preferred magnetic state atn=1 and largeU is a total spin singlet, (iii)U-dependence of the ground state energy has qualitatively the same form as one of the conventional Hubbard model with the (t 2/U)-behavior at largeU. A phase diagram of the model is discussed.  相似文献   

2.
The concentration dependences of the band structure, spectral weight, density of states, and Fermi surface in the paramagnetic state are studied in the Hubbard model within cluster pertubation theory with 2 × 2 clusters. Representation of the Hubbard X operators makes it possible to control conservation of the spectral weight in constructing cluster perturbation theory. The calculated value of the ground-state energy is in good agreement with the results obtained using nonperturbative methods such as the quantum Monte Carlo method, exact diagonalization of a 4 × 4 cluster, and the variational Monte Carlo method. It is shown that in the case of hole doping, the states in the band gap (in-gap states) lie near the top of the lower Hubbard band for large values of U and near the bottom of the upper band for small U. The concentration dependence of the Fermi surface strongly depends on hopping to second (t′) and third (t″) neighbors. For parameter values typical of HTSC cuprates, the existence of three concentration regions with different Fermi surfaces is demonstrated. It is shown that broadening of the spectral electron density with an energy resolution typical of contemporary ARPES leads to a pattern of arcs with a length depending on the concentration. Only an order-of-magnitude decrease in the linewidth makes it possible to obtain the true Fermi surface from the spectral density. The kinks associated with strong electron correlations are detected in the dispersion relation below the Fermi level.  相似文献   

3.
A Monte-Carlo procedure is given for the two-dimensional (2-D) Hubbard model using the Suzuki-Trotter transformation. The resulting three-dimensional (3-D) classical model does not have the usual problems with negative transition probabilities in the large-U limit (U-repulsive interactions). Numerical simulations based on the algorithm described are expected to be of importance for the theory of high-T c superconductivity.  相似文献   

4.
A two-band Hubbard model for highly hybridized copper 3d(x 2y 2) and oxygen 2p(x,y) electrons in CuO2 plane with strong Coulomb repulsion at copper sites is considered. A real-space pairing mechanism induced by antiferromagnetic interaction of Kondo type is treated. To avoid the Gutzwiller approximation the projection technique for two-time Green functions for Hubbard operators is employed. It is shown that due to rigorous restriction of no double occupancy at copper sites the exchange-mediatedp-d pairing with a site-independent gap function isabsent.  相似文献   

5.
We study the difference between on site Hubbard and long range Coulomb repulsions for two interacting particles in a disordered chain. The system size L (in units of the lattice spacing) is of the order of the one particle localization length and the energies are taken near the band center. In the two cases, the limits of weak and strong interactions are characterized by uncorrelated energy levels and are separated by a crossover regime where the states are more extended and the spectra more rigid. U denoting the interaction strength and t the kinetic energy scale, the crossovers take place for interaction energy to kinetic energy ratios U/t and U/(2tL) of order one, for Hubbard and Coulomb repulsions respectively. While Hubbard repulsion can only yield weak critical chaos with intermediate spectral statistics, Coulomb repulsion can drive the two particle system to quantum chaos with Wigner-Dyson spectral statistics. The interaction matrix elements are studied to explain this difference. Received 21 March 2000 and Received in final form 5 February 2001  相似文献   

6.
The strong-coupling perturbation theory of the Hubbard model is presented and carried out to order (t/U)5 for the one-particle Green function in arbitrary dimension. The spectral weight is expressed as a Jacobi continued fraction and compared with new Monte-Carlo data of the one-dimensional, half-filled Hubbard model. Different regimes (insulator, conductor and short-range antiferromagnet) are identified in the temperature-hopping integral (T,t) plane. This work completes a first paper on the subject (Phys. Rev. Lett. 80, 5389 (1998)) by providing details on diagrammatic rules and higher-order results. In addition, the non half-filled case, infinite resummations of diagrams and the double occupancy are discussed. Various tests of the method are also presented. Received 25 October 1999  相似文献   

7.
《Physics letters. A》1998,239(3):187-190
The one-dimensional Hubbard model is known to possess an extended su(2) symmetry and to be integrable. I introduce an integrable model with an extended su(n) symmetry. This model contains the usual su(2) Hubbard model and has a set of features that makes it the natural su(n) generalization of the Hubbard model. Complete integrability is shown by introducing the L-matrix and showing that the transfer matrix commutes with the Hamiltonian. While the model is integrable in one dimension, it provides a generalization of the Hubbard Hamiltonian in any dimension.  相似文献   

8.
A real-space method has been introduced to study the pairing problem within the generalized Hubbard Hamiltonian. This method includes the bond-charge interaction term as an extension of the previously proposed mapping method [1] for the Hubbard model. The generalization of the method is based on mapping the correlated many-body problem onto an equivalent site- and bond-impurity tight-binding one in a higher dimensional space, where the problem can be solved exactly. In a one-dimensional lattice, we analyzed the three particle correlation by calculating the binding energy at the ground state, using different values of the bond-charge, the on-site (U) and the nearest-neighbor (V) interactions. A pairing asymmetry is found between electrons and holes for the generalized hopping amplitude, where the hole pairing is not always easier than the electron case. For some special values of the hopping parameters and for all kinds of interactions in the Hubbard Hamiltonian, an analytical solution is obtained. Received 21 January 2000 and Received in final form 18 July 2000  相似文献   

9.
Using the exact representation of the Green’s function constructed in terms of the Hubbard operators, it has been shown that the kinematic interaction that induces the spin-fluctuation processes in the spatially uniform system of Hubbard fermions leads to significant variations in the spectral intensity A(k, ω) in the Brillouin zone. As a result, the modulation of A(k, ω) appears in the Fermi contour. The sign of the hopping integral within the first coordination sphere is determined by the contour section, where A(k, ω) decreases according to the angle-resolved photoemission spectroscopy data.  相似文献   

10.
Summary We have investigated the ground state of a single hole in the half-filled Hubbard model on a 2D square lattice using the coupled-cluster method. In particular we obtained an analytical expression of the hole energy dispersion function ɛ(k) which is consistent with earlier studies on thet-J model in the strong-coupling limit. An appreciable discrepancy on the hole energy bandwidth is, however, observed between the Hubbard model and thet-J model. We believe that this discrepancy is due to the absence of the three-site interaction term in thet-J model.  相似文献   

11.
The symmetric heavy-light ansatz is a method for finding the ground state of any dilute unpolarized system of attractive two-component fermions. Operationally it can be viewed as a generalization of the Kohn-Sham equations in density functional theory applied to N -body density correlations. While the original Hamiltonian has an exact Z2 symmetry, the heavy-light ansatz breaks this symmetry by skewing the mass ratio of the two components. In the limit where one component is infinitely heavy, the many-body problem can be solved in terms of single-particle orbitals. The original Z2 symmetry is recovered by enforcing Z2 symmetry as a constraint on N -body density correlations for the two components. For the 1D, 2D, and 3D attractive Hubbard models the method is in very good agreement with exact Lanczos calculations for few-body systems at arbitrary coupling. For the 3D attractive Hubbard model there is very good agreement with lattice Monte Carlo results for many-body systems in the limit of infinite scattering length.  相似文献   

12.
Zhe Chang 《Il Nuovo Cimento D》1996,18(9):1087-1097
Summary By making use of the Abelian bosonization procedure, we obtain a Coulomb-gas picture of the continuum limit of the one-dimensional Hubbard model. It is shown clearly that the semi-direct product of two Virasoro algebras (c=1) denotes symmetry of excitations of the Hubbard model. A systematic study of modular invariant partition function for the Hubbard model is presented. Correlation functions are calculated explicitly and the result is in good agreement with those of numerical simulations and Tomonaga-Luttinger model.  相似文献   

13.
In order to describe the dynamics of the tJ model, two different families of first-order Lagrangians in terms of the generators of the Hubbard algebra are found. Such families correspond to different dynamical second-class constrained systems. The quantization is carried out by using the path-integral formalism. In this context the introduction of proper ghost fields is needed to render the model renormalizable. In each case the standard Feynman diagrammatics is obtained and the renormalized physical quantities are computed and analyzed. In the first case a nonperturbative large-N expansion is considered with the purpose of studying the generalized Hubbard model describing N-fold-degenerate correlated bands. In this case the 1/N correction to the renormalized boson propagator is computed. In the second case the perturbative Lagrangian formalism is developed and it is shown how propagators and vertices can be renormalized to each order. In particular, the renormalized ferromagnetic magnon propagator coming from our formalism is studied in details. As an example the thermal softening of the magnon frequency is computed. The antiferromagnetic case is also analyzed, and the results are confronted with previous one obtained by means of the spin-polaron theories.  相似文献   

14.
The effects of including the exchange interaction (J) and Hubbard on-site Coulombic interaction (U) on the structural parameters and magnetic moment of Mn-doped ZnO were explored. The calculations were performed with the plane-wave pseudopotential method along with generalized-gradient approximations (GGA). Using the GGA+U + +J method by applying Hubbard corrections Ud to the Zn 3d states and Up to the O 2p states, the lattice constants were calculated for various reported Hubbard parameters. The difference in the lattice constants between the calculated results and experimental measurements is within 1% for pure ZnO and pure MnO. This study considers three cases: (i) substitution of Mn for Zn, (ii) substitution of Mn for Zn combined with Zn vacancy, and (iii) substitution of Mn for Zn with O vacancy. Results are shown that the system is ferromagnetic (FM) when zinc vacancies are present. For three cases with oxygen vacancies, only one of them is FM. It was also found that the Hubbard U and exchange interaction J improved the calculated results, allowing it to exhibit good agreement properties for Mn-doped ZnO with the experimental data.  相似文献   

15.
One central challenge in high-T c superconductivity (SC) is to derive a detailed understanding for the specific role of the Cu-d x2-y2 and O-p x,y orbital degrees of freedom. In most theoretical studies an effective one-band Hubbard (1BH) or t-J model has been used. Here, the physics is that of doping into a Mott-insulator, whereas the actual high-T c cuprates are doped charge-transfer insulators. To shed light on the related question, where the material-dependent physics enters, we compare the competing magnetic and superconducting phases in the ground state, the single- and two-particle excitations and, in particular, the pairing interaction and its dynamics in the three-band Hubbard (3BH) and 1BH-models. Using a cluster embedding scheme, i.e. the variational cluster approach (VCA), we find which frequencies are relevant for pairing in the two models as a function of interaction strength and doping: in the 3BH-models the interaction in the low- to optimal-doping regime is dominated by retarded pairing due to low-energy spin fluctuations with surprisingly little influence of inter-band (p-d charge) fluctuations. On the other hand, in the 1BH-model, in addition a part comes from “high-energy” excited states (Hubbard band), which may be identified with a non-retarded contribution. We find these differences between a charge-transfer and a Mott insulator to be renormalized away for the ground-state phase diagram of the 3BH- and 1BH-models, which are in close overall agreement, i.e. are “universal”. On the other hand, we expect the differences - and thus, the material dependence to show up in the “non-universal” finite-T phase diagram (T c-values).  相似文献   

16.
A construction of universal dynamical R-matrices is presented. It is based on a solution F of a shifted cocycle relation. F provides a twist from the usual universal R-matrix to a dynamical one, solution of the Gervais-Neveu-Felder equation. In the second part, we construct two quantum spin chain Hamiltonians with quantum sl(2|1) invariance. These spin chains define variants of the Hubbard model and describe electron models with pair hoppings.  相似文献   

17.

Metal-insulator and CDW-SDW transitions are studied in the one-dimensional Extended Hubbard Model at half-filling by analysing the behaviour of local entanglement in fermionic systems. 1D traditional Hubbard model exhibits metal-insulator transition at critical point Uc = 0, where local entanglement reaches its maximum value. Moreover, a transition between charge- and spin-density- wave (CDW-SDW) occurs in 1D Extended Hubbard Model tUV with long-range interaction at straight line U = 2 V. The analysis of our obtained results shows that CDW-SDW transition has curious properties whose can be used in quantum information processing.

  相似文献   

18.
林明喜  祁胜文 《中国物理 B》2010,19(12):127401-127401
Using a universal relation between electron filling factor and ground state energy,this paper studies the dependence of correlation exponents on the electron filling factor of one-dimensional extended Hubbard model in a strong coupling regime,and demonstrates that in contrast to the usual Hubbard model(gc = 1/2),the dimensionless coupling strength parameter g c heavily depends on the electron filling,and it has a "particle-hole" symmetry about electron quarter filling point.As increasing the nearest neighbouring repulsive interaction,the single particle spectral weight is transferred from low energy to high energy regimes.Moreover,at electron quarter filling,there is a metal-Mott insulator transition at the strong coupling point gc = 1/4,and this transition is a continuous phase transition.  相似文献   

19.
We propose a Green's function technique, to investigate finite-temperature properties of the Hubbard model on the triangular lattice. The lattices are covered by dimers. The method is exact in two limits:U=0 or decoupled dimers. We apply this approximate method to calculate the ground state energy, the specific heat and the single-particle spectral weight for the 1/2-filled case. The largest lattice considered has 16×16 sites. The approximate ground state energy as a function of the on-site interactionU oscillates around the exact energyin the 1/2-filled case. We find two peaks in the specific heat. ForU5t the single-particle spectral weight splits into upper and lower Hubbard bandasymmetrically. Thus in the 1/2-filled case the chemical potential is placed in the upper band leading to a metallic state. The approximate technique yields a finite zero-point entropy for mediumU. All the investigations signal a RVB state in the range of mediumU as formerly proposed by Callaway.  相似文献   

20.
We calculate the zero-temperature self-energy to fourth-order perturbation theory in the Hubbard interaction U for the half-filled Hubbard model in infinite dimensions. For the Bethe lattice with bare bandwidth W, we compare our perturbative results for the self-energy, the single-particle density of states, and the momentum distribution to those from approximate analytical and numerical studies of the model. Results for the density of states from perturbation theory at U/W = 0.4 agree very well with those from the Dynamical Mean-Field Theory treated with the Fixed-Energy Exact Diagonalization and with the Dynamical Density-Matrix Renormalization Group. In contrast, our results reveal the limited resolution of the Numerical Renormalization Group approach in treating the Hubbard bands. The momentum distributions from all approximate studies of the model are very similar in the regime where perturbation theory is applicable, . Iterated Perturbation Theory overestimates the quasiparticle weight above such moderate interaction strengths.Received: 9 September 2003, Published online: 30 January 2004PACS: 71.10.Fd Lattice fermion models (Hubbard model, etc.) - 71.27. + a Strongly correlated electron systems; heavy fermions - 71.30. + h Metal-insulator transitions and other electronic transitions  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号