首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two mononuclear copper(II) complexes [Cu(L)(NO2)](ClO4) (1) and [Cu(L)(MO4)]2· 5H2O (2) (L = 1,3,10, 12,16,19-hexaazatetracyclo[17,3,1,112.16,04.9]tetracosane) have been synthesized and their structures determined. Both compounds show a distorted square-pyramidal geometry with the two secondary and two tertiary amines of the macrocycle and one ligand coordinated at the axial position. Cyclic voltammetry of the complexes gives two one-electron waves corresponding to CuII/CuIII and CuII/CuI processes. The electronic spectra and electrochemical behavior of the complexes are significantly affected by the nature of the organic ligands.  相似文献   

2.
A new series of binuclear unsymmetrical compartmental oxime complexes (15) [M2L] [M=Cu(II), Ni(II)] have been synthesized using mononuclear complex [ML] (L=1,4-bis[2-hydroxy-3-(formyl)-5-methylbenzyl]piperazine), hydroxylamine hydrochloride and triethylamine. In this system there are two different compartments, one has piperazinyl nitrogens and phenolic oxygens and the other compartment has two oxime nitrogens and phenolic oxygens as coordinating sites. The complexes were characterized by elemental and spectral analysis. Electrochemical studies of the complexes show two step single electron quasi-reversible redox processes at cathodic potential region. For copper complexes E1 pc=−0.18 to −0.62 and E2 pc=−1.18 to −1.25 V, for nickel complexes E1 pc=−0.40 to −0.63 and E2 pc=−1.08 to −1.10 V and reduction potentials are sensitive towards the chemical environment around the copper and nickel atoms. The nickel(II) complexes undergo two electrons oxidation. The first one electron oxidation is observed around +0.75 V and the second around +1.13 V. ESR Spectra of the binuclear copper(II) complexes [Cu2L](ClO4), [Cu2L(Cl)], [Cu2L(NO3)] shows a broad signal at g=2.1 indicating the presence of coupling between the two copper centers. Copper(II) complexes show a magnetic moment value of μeff around 1.59 B.M at 298 K and variable temperature magnetic measurements show a −2J value of 172 cm−1 indicating presence of antiferromagnetic exchange interaction between copper(II) centres.  相似文献   

3.
Several Cu(II) complexes with 1,2,4-triazolo[1,5-a]pyrimidine (tp) and its 5,7-dimethyl derivative (dmtp) have been isolated and structurally characterized. Five of them are mononuclear and contain 1,10-phenanthroline (phen) or ethylenediamine (en) as auxiliary ligands, their formula being [Cu(H2O)(phen)(tp)2](ClO4)2 · H2O, [Cu(H2O)(phen)(dmtp)2](ClO4)2, [Cu(NO3)(H2O)(phen)(tp)](NO3), [Cu(H2O)2(en)(tp)2](ClO4)2 and [Cu(H2O)2(en)(dmtp)2](ClO4)2. In all these compounds the tp or dmtp ligand is monodentately coordinated via the nitrogen atom in position 3. The auxiliary ligand influences the coordination number, which is five when this ligand is phen and six when it is en whereas the number of triazolopyrimidine ligands linked to the metal seems to be influenced by the nature of the counteranion. A dinuclear compound with tp has also been isolated, its formula being [Cu2(OH)(H2O)2.5(tp)5](ClO4)3·(H2O)1.5, with both metal atoms linked by an hydroxydo group and by a tp bridging ligand, coordinated to one of the copper atoms via N3 and to the other via N4. This compound has several unusual features among the metal complexes with triazolopyrimidine derivatives: the presence of two different kinds of bridging moieties, the coexistence of bridging and terminal ligands and the formation of a N3–N4 bridge for a Cu(II) dinuclear compound for a derivative without exocyclic oxygen atoms.  相似文献   

4.
Three new Cu(II)–Ni(II) heterodinuclear complexes: [Cu(PMoxd)Ni(phen)2](ClO4)2 (1), [Cu(PMoxd)Ni(NO2-phen)2](ClO4)2 (2), [Cu(PEoxd)Ni(Me2-bpy)2](ClO4)2 (3), [where Cu(PMoxd)=N,N′-bis(pyridyl-methyl)oxamidatocopper(II), Cu(PExod)=N,N′-bis(2-pyridyl-ethyl)oxamidatocopper(II), phen=1,10-phenanthroline and NO2-phen=5-nitro-1,10-phenanthroline and bpy=2,2′-bipyridine] were prepared and characterized by i.r. and electronic spectra, and by magnetic properties. The magnetic analysis was carried out by means of the theoretical expression of the magnetic susceptibility deduced from the spin Hamiltonian H=−2JS1S2, leading to J=−70.83 cm−1 (1); −56.23 cm−1 (2); −57.30 cm−1 (3), indicating a weak antiferromagnetic spin–exchange interaction between Cu(II) and Ni(II) ions within three complexes.  相似文献   

5.
Two 2-terephthalate (tp) bridged complexes, [Cu2(tp)(pren)4](ClO4)2 (pren = 1,3-diaminopropane) (1) and [Ni2(tp)(pren)4(Him)2](ClO4)2 (Him = imidazole) (2), have been synthesized and characterized by X-ray single-crystal structural analysis. In the discrete dinuclear [Cu2(tp)(pren)4]2+ cation of complex (1), each CuII atom has a square-pyramidal geometry, being coordinated by four nitrogen atoms (avg. 2.031 Å) from two pren ligands at the basal plane and one oxygen atom [2.259(3) Å] from a bis-monodentate tp group at the axial position. In the discrete dinuclear [Ni2(tp)(pren)4(Him)2]2+ cation of complex (2), each NiII center is coordinated by five nitrogen atoms [Ni—N 2.069(3)–2.109(2) Å] from one Him group and two pren groups, and completed by one oxygen atom [Ni—O 2.138(3) Å] from a bis-monodentate tp group to furnish a distorted octahedron. Magnetic susceptibility studies show that the pair of metal atoms, although being separated by >11.5 Å, exhibit weak intramolecular antiferromagnetic interactions in complexes (1) (g = 2.07 and J = –3.4 cm–1) and (2) (g = 2.10 and J = –0.7 cm–1). The electrochemical behaviors of the complexes have also been studied by cyclic voltammogram processes.  相似文献   

6.
Summary Four new trinuclear copper(II) complexes, [Cu(phen)-(NBzIm)] (ClO4) (1), [Cu(bpy)(NBzIm)](ClO4) (2), [Cu-(Me2-bpy)(NBzIm)](Ac)·1/2H2O (3) and [Cu(Me2-bpy)-(Im)](ClO4)·1/2H2O (4) (phen = 1, 10-phenanthroline, bpy = 2,2-bipyridine, NBzIm = 6-nitrobenzimidazolate ion, Im=imidazolate ion) have been prepared and characterized by variable temperature magnetic susceptibility measurements. A weak antiferromagnetic spin exchange interaction operates between copper(II) ions, exchange integrals evaluated as J =-23.82 cm-1 for (1); and J=-21.91 cm-1 for (2).  相似文献   

7.
Yi  Long  Zhu  Li-Na  Ding  Bin  Cheng  Peng  Liao  Dai-Zheng  Zhai  Yu-Ping  Yan  Shi-Ping  Jiang  Zong-Hui 《Transition Metal Chemistry》2004,29(2):200-204
Two novel complexes, [Cu(HL)2(H2O)]2(OH)2(ClO4)2·1.5H2O (1) and [Cu(HL)2]Cl2·4H2O (2), have been prepared by reacting copper salts with the 4-amino-3-ethyl-1,2,4-triazole-5-thione (HL) ligand in neutral solution and in HCl (6 mol L–1) medium, respectively. They were characterized by FT-IR and u.v.–vis. spectra, and the structures were determined by single crystal X-ray diffraction techniques. In both complexes, the triazole ligand chelated the metal ions through the amine and thione substituents on the five-membered ring. Complex (1) has a square-pyramidal copper(II) ion coordinated by two triazole ligands and one water molecule. Unlike (1), the Cu2+ ion in (2) displays its characteristic Jahn–Teller distortion with the distance of the Cl anions to metal ion further away than that of the triazole ligands. The most intriguing structural features of the title complexes are that the HL ligands chelate copper(II) ions through the N(1) and S(1) atoms, in a cis mode in (1) and a trans mode in (2). In both cases, self-assembled crystals, by supramolecular contacts simultaneously, form two multi-dimensional frameworks.  相似文献   

8.
Three new -oxalato-bridged heterotrinuclear copper(II)–iron(III)–copper(II) complexes have been synthesized and identified: [Cu2Fe(ox)3L2]ClO4 [L = 5-nitro-1,10-phenanthroline (NO2phen); 2,9-dimethyl-1,10-phenanthroline (Me2phen) or 2,2-bipyridine (bpy), respectively]; ox = the oxalato dianions. Based on elemental analyses, molar conductivity and magnetic moment (at room-temperature) measurements, i.r. and electronic spectral studies, extended ox-bridged structures consisting of two copper(II) and an iron(III) ions, in which the central iron(III) ion has an octahedral environment and the end-capped two copper(II) ions a square-planar environment, are proposed for these complexes. The [Cu2Fe(ox)3(Me2phen)2]ClO4 (1) and [Cu2Fe(ox)3(bpy)2]ClO4 (2) complexes were characterized further by variable-temperature magnetic susceptibility (4.2–300 K) measurements and the observed data were simulated by the equation based on the spin Hamiltonian operator, = –2J1 · 2, giving the exchange integrals J = –12.85 cm–1 for (1) and J = –11.28 cm–1 for (2). The results indicate the presence of an antiferromagnetic spin-exchange interaction between the copper(II) and iron(III) ions through the oxalato-bridge in both complexes (1) and (2).  相似文献   

9.
The reaction of CuCl2 · 2H2O and CdCl2 with di-(2-picolyl)sulfide (dps) leads to the formation of mononuclear copper(II) and binuclear cadmium(II) complexes, [Cu(dps)Cl2] · H2O (1) and [(dps)(Cl)CdII(μ-Cl)2CdII(Cl)(dps)] (2). The copper atom in (1) is coordinated to one sulfur and two nitrogen atoms from the dps ligand and two chlorides in a distorted square-pyramidal environment. Complex (2) has two distorted octahedra sharing the basal edge that contain the bridging chloro ligands, each of which resides at a center of inversion. Cyclic voltammetric data show that (1) undergoes two reversible one-electron waves corresponding to CuII/CuIII and CuII/CuI processes. However, cyclic voltammetry of (2) gives two irreversible reduced waves.  相似文献   

10.
Summary Reaction of 1,4,8, 12-tetra-azacyclopentadecance ([15])-aneN4) with an excess of acrylonitrile gives theN-tetracyanoethylated ligand (L). Several new complexes of this ligand with nickel(II), copper(II) and zinc(II) have been prepared and characterised. The complexes can be formulated [NiL]n(ClO4)2n, [ML](ClO4)2 (M=CuII and ZnII), [NiL(NCS)2], [NiLCl2], [CuL](NO3)2 and [NiL]n(NO3)2n·2H2O. Spectral, magnetic and conductivity data are reported and possible structures are considered.  相似文献   

11.
Mixed ligand dinuclear copper(II) complexes of the general formula [Cu2(Rdtc)tpmc)](ClO4)3 with octaazamacrocyclic ligand tpmc and four different heterocyclic dithiocarbamate ligands Rdtc?, as well as the complexes [Cu2(tpmc)](ClO4)4 and [Cu(tpmc)](ClO4)2?2H2O were studied in aqueous NaClO4 and HClO4 solutions by cyclic voltammetry on glassy carbon electrode. The electrochemical properties of the ligands and Cu(II) complexes were correlated with their electronic structure. Conductometric experiments showed different stoichiometry in complexation of tpmc with Cu2+ ions and transport of ions in acetonitrile and in aqueous media. These studies clarified the application of this macrocyclic ligand as ionophore in a PVC membrane copper(II) selective electrode and contributed elucidation of its sensor properties.  相似文献   

12.
Reaction of K3[Fe(CN)6] with [Cu(tn)2](ClO4)2 (tn=1,3-diaminopropane) leads to a novel mixed cyano and tn bridged three-dimensional (3D) bimetallic assembly (1), in which each [Fe(CN)6]4− anion connects six copper(II) cations via six CN groups, whereas each copper(II) cation is linked to three [Fe(CN)6]4− ions and two other copper(II) ions through Cu–NC–Fe and Cu–tn–Cu linkages, respectively. Magnetic studies reveal weak antiferromagnetic interactions between the nearest CuII (S=1/2) ions through the diamagnetic [Fe(CN)6]4− anion.  相似文献   

13.
The combined use of nitroxide free radicals as terminal ligands and precursor [Cu2(oxpn)]2+ anions has led to the preparation of two novel oxamido-bridged dinuclear copper(II) complexes containing nitronyl nitroxide Cu2(oxpn)(NIToBA)2 (1) or imino nitroxide [Cu2(oxpn)(IMpPy)2](ClO4)2 · 2H2O (2). X-ray crystallography shows that both (1) and (2) have like as coordination modes where the oxamido group as a trans-form bridged ligand, combine two copper(II) atoms. Each copper (II) ion has a similar coordination environment, in which it adopts a distorted square planar geometry. The temperature dependence of the magnetic susceptibility measurements shows the weak antiferromagnetic co upling interaction between the copper(II) atoms and the nitronyl nitroxide radicals in both complexes.  相似文献   

14.
Salen type complexes, CuL, the corresponding tetrahydrosalen type complexes, Cu[H4]L, and N,N′-dimethylated tetrahydrosalen type complexes, Cu[H2Me2]L, were investigated using cyclic voltammetry, and electronic and ESR spectroscopy. In addition, the analogous copper(II) complexes with a derivative of the tetradentate ligand ‘salphen’ [salphen=H2salphen=N,N′-disalicylidene-1,2-diaminobenzene] were studied. Solutions of CuL, Cu[H4]L and Cu[H2Me2]L are air-stable at ambient temperature, except for the complex Cu(tBu, Me)[H4]salphen [H2(tBu, Me)[H4]salphen=N,N′-bis(2-hydroxy-3-tert-butyl-5-methylbenzyl)-1,2-diaminobenzene]. Cu(tBu, Me)[H4]salphen interacts with dioxygen and the ligand is oxidatively dehydrogenated (–CH2–NH–→–C=N–) to form Cu(tBu, Me)[H2]salphen and finally, in the presence of base, Cu(tBu, Me)salphen. X-ray structure analysis of Cu(tBu, Me)[H2Me2]salen confirms a slightly tetrahedrally distorted planar geometry of the CuN2O2 coordination core. The complexes were subjected to spectrophotometric titration with pyridine, to determine the equilibrium constants for adduct formation. It was found that the metal center in the complexes studied is only of weak Lewis acidity. In dichlormethane, the oxidation Cu(II)/Cu(III) is quasireversible for the CuL type complexes, but irreversible for the Cu[H4]L and Cu[H2Me2]L type. A poorly defined wave was observed for the irreversible reduction Cu(II)/Cu(I) at potentials less than −1.0 V. The ESR spectra of CuL at both 77 K and room temperature reveal that very well resolved lines can be attributed to the interaction of an unpaired electron spin with the copper nuclear spin, 14N donor nuclei and to a distant interaction with two equivalent protons [ACu(iso)≈253 MHz, AN(iso)≈43 MHz, AN(iso)≈20 MHz]. These protons are attached to the carbon atoms adjacent to the 14N nuclei. In contrast to CuL, the number of lines in the spectra of the complexes Cu[H4]L and Cu[H2Me2]L is greatly reduced. At room temperature, only a quintet with a considerably smaller nitrogen shf splitting constant [AN(iso)≈27 MHz] is observed. Both factors, planarity and conjugation, are thus essential for the observation of distant hydrogen shf splitting in CuL. Due to the C=N bond hydrogenation, the coordination polyhedra of the complexes Cu[H4]L and Cu[H2Me2]L is more flexible and more sensitive to ligand modification than that of CuL. The electron-withdrawing effect of the phenyl ring of the phenylenediamine bridge is reflected in a reduction of the copper hyperfine coupling constants in Cu(tBu, Me)[H4]salphen and Cu(tBu, Me)[H2Me2]salphen complexes [ACu(iso)≈215 MHz].  相似文献   

15.
Tetradentate Schiff-base carboxylate-containing ligands, bis(2-pyridylmethyl)amino-3-propionic acid (Hpmpa) and bis(2-pyridylmethyl)amino-4-butyric acid (Hpmba), react with CuCl2 to give rise to the mononuclear complexes [Cu(Hpmpa)Cl]Cl · 2H2O (1) and [Cu(Hpmba)Cl2]· H2O (2). These complexes have been characterized by X-ray crystallography, spectroscopic and cyclic voltammetry. Crystal structure of (1) shows that the copper(II) ion has a distorted square-pyramidal geometry with the three nitrogen atoms of the Hpmpa ligand and one chloride anion occupying the basal plane and an oxygen atom from the carboxylate group coordinating the axial position. In (2), the coordination environment around the copper(II) ion reveals a distorted square-pyramids with three nitrogen atoms of the Hpmba ligand and one chloride anion that comprise the basal plane, whereas the apical position is filled by the chloride anion. Cyclic voltammetry of the complexes gives two one-electron waves corresponding to CuII/CuIII and CuIII/CuI processes. The electronic spectra and redox potentials of the complexes are influenced significantly by the N-pendant carboxylate groups.  相似文献   

16.
Four copper(II) complexes were synthesized by reactions of new imidazole-containing polyamine ligand N1-(2-aminoethyl)-N1-(1H-imidazol-4-ylmethyl)-ethane-1,2-diamine (HL) with Cu(ClO4)2 · 6H2O under different pH and their structures were characterized by X-ray crystallography. Interestingly, the complexes have diverse structures from protonated ligand [H3(HL)][CuCl4] · Cl (1), dinuclear [Cu2(HL)2Cl](ClO4)3 · H2O (2), one-dimensional chain polynuclear {[Cu(L)](ClO4)}n (3) to cyclic-tetranuclear [Cu4(L)4](ClO4)4 · 3CH3CN (4) coordination compounds by varying reaction pH from acidic to basic. The results indicate that the reaction pH has great impact on the formation and structure of the complexes. The magnetic measurements show that there are antiferromagnetic interactions between the Cu(II) centers with g = 2.09, J = −39.0 cm−1 and g = 2.17, J = −36.8 cm−1 for 3 and 4, respectively.  相似文献   

17.
The syntheses of two polydentate ligands comprising imidazole donors, 1,3-bis[(4-methyl-5-imidazol-1-yl) ethylideneamino]propan-2-ol (BIPO), 1,3-bis[(4-methyl-5-imidazol-1-yl)ethylideneamino]propane (BIP), and their copper(II) complexes [Cu(BIPO)(ClO4)(H2O)] (NO3) · H2O (1) and [Cu(BIP)(ClO4)](ClO4) · 2H2O (2) are reported. Single-crystal structural analyses show that (1) adopts an elongated octahedral geometry with the axial positions occupied by a perchlorate oxygen atom and an aqua ligand, while (2) adopts a distorted square-pyramidal geometry with the axial positions occupied by a perchlorate oxygen atom. Electronic spectra in aqueous solution indicate that both (1) and (2) adopt square-pyramidal geometry. Cyclic voltammetry in aqueous solution gives reduction waves at –0.07 and –0.08 V versus s.c.e. for (1) and (2), respectively. The low reduction potential and general reversibility of the redox reaction of (1) and (2) indicate that BIPO and BIP are flexible enough to stabilize both CuII and CuI forms of the complexes.  相似文献   

18.
Three novel -oxalato-bridged Cu 3 II CrIII-type heterotetranuclear complexes described by the overall formula [Cu3Cr(ox)3L3](ClO4)3, where ox represents the oxalato dianions, L stands for diaminoethane (en), 1,3-diaminopropane (pn), and 1,2-diaminopropane (ap) respectively, have been synthesized and characterized by elemental analyses, molar conductivity and magnetic moment (room-temperature) measurements, i.r., e.s.r. and electronic spectral studies. It is proposed that these complexes have oxalato-bridged structures consisting of three copper(II) ions and a chromium(III) ion, in which the chromium(III) ion has an octahedral environment and the three copper(II) ions have square-planar environments. Variable temperature magnetic susceptibility (4.2–300 K) measurements and studies of complexes [Cu3Cr(ox)3(en)3](ClO4)3 (1) and [Cu3Cr(ox)3(pn)3](ClO4)3 (2) revealed the occurrence of an intramolecular ferromagnetic interaction between the copper(II) and chromium(III) ions through the oxalato-bridge within each molecule. The magnetic data have been used also to deduce the indicated -oxalato-bridges [Cu 3 II CrIII] heterotetranuclear structure. On the basis of the spin Hamiltonian operator, , the magnetic analyses were carried out for the two CuII—CrIII heterotetranuclear complexes and the spin-coupling constants (J) were evaluated as +6.36 cm–1 for (1) and +7.02 cm–1 for (2). The results indicate that the bridging oxalato entity should be able to transmit ferromagnetic interactions in the strict orthogonality [Cu 3 II CrIII] system.  相似文献   

19.
The solutions containing one of the copper salts (CuCl2, Cu(ClO4)2, Cu(NO3)2, and CuSO4) and one of the non-steroidal anti-inflammatory drugs (NSAIDs, ibuprofen, ketoprofen or naproxen) were analyzed by electrospray ionization mass spectrometry. Three of the salts, namely CuCl2, Cu(ClO4)2 and Cu(NO3)2, yielded binuclear complexes of drug:metal stoichiometry 1:2. Existence of the complexes of such stoichiometry has not been earlier observed. For copper(II) chloride the complexes (ions of the type [M-HCOOH+Cu2Cl]+ and [M+Cu2Cl]+, M stands for the drug molecule) were formed in the gas phase. When copper(II) perchlorate or copper(II) nitrate was used, the observed binuclear copper complexes (ions of the type [M-H+Cu2(ClO4)2+CH3OH]+, [M-H+Cu2(ClO4)2]+ and [M-H+Cu2(NO3)2+CH3OH]+, [M-H+Cu2(NO3)2]+) were observed at low cone voltage, thus these complexes must have already existed in the solution analysed. Therefore, such complexes may also exist under physiological conditions.   相似文献   

20.
He  Yi  Kou  Hui-Zhong  Wang  Ru-Ji  Li  Yadong  Xiong  Ming 《Transition Metal Chemistry》2003,28(4):464-467
Two new CuII complexes, [Cu(Hambi)2(ClO4)2] and [Cu(Hambi)2(dca)2] (Hambi = 2-aminomethylbenzimidazole) have been prepared and characterized by X-ray diffraction, electronic paramagnetic resonance (e.p.r.) and i.r. analyses. Both complexes exhibit an elongated octahedral coordination environment with two Hambi ligands situated at the equatorial positions in a trans fashion [Cu—N bond distances range from 1.940(9) to 2.031(9) Å]. In the second complex, a new coordination mode, in which dicyanamide coordinates to copper(II) as a monodentate ligand with the amide nitrogen atom, was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号