首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One of the main challenges in deep-water drilling is gas-hydrate plugs, which make the drilling unsafe. Some oil-based drilling fluids (OBDF) that would be used for deep-water drilling in the South China Sea were tested to investigate the characteristics of gas-hydrate formation, agglomeration and inhibition by an experimental system under the temperature of 4 ℃ and pressure of 20 MPa, which would be similar to the case of 2000 m water depth. The results validate the hydrate shell formation model and show that the water cut can greatly influence hydrate formation and agglomeration behaviors in the OBDF. The oleophobic effect enhanced by hydrate shell formation which weakens or destroys the interfacial films effect and the hydrophilic effect are the dominant agglomeration mechanism of hydrate particles. The formation of gas hydrates in OBDF is easier and quicker than in water-based drilling fluids in deep-water conditions of low temperature and high pressure because the former is a W/O dispersive emulsion which means much more gas-water interfaces and nucleation sites than the later. Higher ethylene glycol concentrations can inhibit the formation of gas hydrates and to some extent also act as an anti-agglomerant to inhibit hydrates agglomeration in the OBDF.  相似文献   

2.
One of the main challenges in deep-water drilling is gas-hydrate plugs,which make the drilling unsafe.Some oil-based drilling fluids(OBDF) that would be used for deep-water drilling in the South China Sea were tested to investigate the characteristics of gas-hydrate formation,agglomeration and inhibition by an experimental system under the temperature of 4 ?C and pressure of 20 MPa,which would be similar to the case of 2000 m water depth.The results validate the hydrate shell formation model and show that the water cut can greatly influence hydrate formation and agglomeration behaviors in the OBDF.The oleophobic effect enhanced by hydrate shell formation which weakens or destroys the interfacial films effect and the hydrophilic effect are the dominant agglomeration mechanism of hydrate particles.The formation of gas hydrates in OBDF is easier and quicker than in water-based drilling fluids in deep-water conditions of low temperature and high pressure because the former is a W/O dispersive emulsion which means much more gas-water interfaces and nucleation sites than the later.Higher ethylene glycol concentrations can inhibit the formation of gas hydrates and to some extent also act as an anti-agglomerant to inhibit hydrates agglomeration in the OBDF.  相似文献   

3.
The formation of CH4-CO2 mixed gas hydrates was observed by measuring the change of vapor-phase composition using gas chromatography and Raman spectroscopy. Preferential consumption of carbon dioxide molecules was found during hydrate formation, which agreed well with thermodynamic calculations. Both Raman spectroscopic analysis and the thermodynamic calculation indicated that the kinetics of this mixed gas hydrate system was controlled by the competition of both molecules to be enclathrated into the hydrate cages. However, the methane molecules were preferentially crystallized in the early stages of hydrate formation when the initial methane concentration was much less than that of carbon dioxide. According to the Roman spectra, pure methane hydrates first formed under this condition. This unique phenomenon suggested that methane molecules play important roles in the hydrate formation process. These mixed gas hydrates were stored at atmospheric pressure and 190 K for over two months to examine the stability of the encaged gases. During storage, CO2 was preferentially released. According to our thermodynamic analysis, this CO2 release was due to the instability of CO2 in the hydrate structure under the storage conditions.  相似文献   

4.
Structural, dynamic, and thermodynamic properties of ozone, oxygen, and mixed ozone-oxygen hydrates are investigated. The thermodynamic stability regions of these hydrates are found. Ozone can form hydrates at ambient pressure and temperatures below 230 K. Strong dependence of the binary hydrate formation pressure on the ozone concentration in the gas phase is shown. In the formation of the hydrate, ozone concentrates in the hydrate phase. At an ozone concentration of 5 mol.% in the gas phase, the ozone content in the hydrate reaches 40%.  相似文献   

5.
Gas hydrates are ice-like crystalline compounds, which form through a combination of water and suitably sized guest molecules under low temperature and elevated pressure conditions. These solid compounds give rise to problems in the natural gas oil industry because they can plug pipelines and process equipment. Low dosage hydrate inhibitors are a recently developed hydrate control technology, which can be more cost-effective than traditional practices such as methanol and glycols. The kinetics of hydrate growth has been modeled by numerous authors who have measured the gas consumption rate during hydrate formation in batch agitator reactors.  相似文献   

6.
Investigations into the structures of gas hydrates, the mechanisms of formation, and dissociation with modern instruments on the experimental aspects, including Raman, X-ray, XRD, X-CT, MRI, and pore networks, and numerical analyses, including CFD, LBM, and MD, were carried out. The gas hydrate characteristics for dissociation and formation are multi-phase and multi-component complexes. Therefore, it was important to carry out a comprehensive investigation to improve the concept of mechanisms involved in microscale porous media, emphasizing micro-modeling experiments, 3D imaging, and pore network modeling. This article reviewed the studies, carried out to date, regarding conditions surrounding hydrate dissociation, hydrate formation, and hydrate recovery, especially at the pore-scale phase in numerical simulations. The purpose of visualizing pores in microscale sediments is to obtain a robust analysis to apply the gas hydrate exploitation technique. The observed parameters, including temperature, pressure, concentration, porosity, saturation rate, and permeability, etc., present an interrelationship, to achieve an accurate production process method and recovery of gas hydrates.  相似文献   

7.
A new thermodynamic calculation procedure is introduced to predict the equilibrium conditions of multicomponent gas hydrates containing hydrogen. This new approach utilizes an excess Gibbs potential term to account for second- or higher-order water-cavity distortions due to the presence of multiple guest species. The excess Gibbs potential describes changes in reference chemical potentials according to different compositions of guest mixtures in the hydrate phase. To determine the equilibrium conditions of multicomponent gas hydrates, the excess Gibbs potential term is incorporated to the Lee-Holder model along with the Zele-Lee-Holder cell distortion model. For binary gas hydrates between hydrogen and the other gas molecule, the predicted equilibrium pressure deviates within 10-20% from the experimental value. For the ternary and quaternary mixture hydrates, the model prediction is reasonably good but its error increases with increasing pressure and temperature under the presence of THF.  相似文献   

8.
Structural, dynamic, and thermodynamic features of double hydrates of xenon and nitrous oxide are calculated. Thermodynamic stability regions of these hydrates are found. At the atmospheric pressure the xenon hydrate is in the equilibrium with the gas phase at temperatures up to 263 K, whereas at these pressures the nitrous oxide hydrate decomposes already at 218 K. A strong dependence of the equilibrium temperatures and pressures of the formation/decomposition of double nitrous oxide and xenon hydrates on the composition of their mixture in the gas phase is shown.  相似文献   

9.
This study presents experimental kinetic and thermodynamic data for CF4 clathrate hydrates. Experimental measurements were undertaken in a high pressure equilibrium cell with a 40 cm3 inner volume. The measurements of experimental hydrate dissociation conditions were performed in the temperature range of (273.8 to 278.3) K and pressures ranging from (4.55 to 11.57) MPa. A thermodynamic model based on van der Waals and Platteeuw (vdW–P) solid solution theory was used for prediction and comparison of hydrate dissociation conditions and the Langmuir constant parameters for CF4 based on Parrish and Prausnitz equation are reported. For the kinetics, the effect of initial pressure and temperature on the induction time, CF4 hydrate formation rate, the apparent rate constant of reaction, storage capacity, and water to hydrate conversion during the hydrate formation were studied. Kinetic experiments were performed at initial temperatures of (275.3, 276.1 and 276.6) K and initial pressures of (7.08, 7.92, 9.11, 11.47 and 11.83) MPa. Results show that increasing the initial pressure at constant temperature decreases the induction time, while CF4 hydrate formation rate, the apparent rate constant of reaction, storage capacity, and water to hydrate conversion increase. The same trends are observed with a decrease in the initial temperature at constant pressure.  相似文献   

10.
The dissociation of gas and model hydrates was studied using a classical thermodynamic method and a calorimetric method, in various aqueous media including pure water, high concentration calcium chloride solutions and water-in-oil emulsions. Methane hydrate dissociation temperatures vs. pressure curves were determined using pressure vs. temperature measurements in a constant volume cell (PVT), and high pressure differential scanning calorimetry (DSC), at 5 to 10 MPa gas pressure and at temperatures ranging from -10 to +12°C. PVT and DSC results are in good agreement, and concordant with data available in literature. From a thermodynamic point of view, there are no measurable differences between bulk solutions and emulsions. From a kinetic point of view, due to the considerable surface of interface between the two phases, emulsions allow the formation of much greater amounts of hydrate than solutions, without any agitation. Model hydrate of trichlorofluoromethane was studied in 9 to 27 mass% calcium chloride solutions in emulsion in oil, using DSC under atmospheric pressure, at temperatures ranging from -20 to +5°C. A diagram of dissociation temperature vs. salt concentration is proposed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
The molecular exchange of CH4 for CO2 in gas hydrates grown in confined nanospace has been evaluated for the first time using activated carbons as a host structure. The nano‐confinement effects taking place inside the carbon cavities and the exceptional physicochemical properties of the carbon structure allows us to accelerate the formation and decomposition process of the gas hydrates from the conventional timescale of hours/days in artificial bulk systems to minutes in confined nanospace. The CH4/CO2 exchange process is fully reversible with high efficiency at practical temperature and pressure conditions. Furthermore, these activated carbons can be envisaged as promising materials for long‐distance natural gas and CO2 transportation because of the combination of a high storage capacity, a high reversibility, and most important, with extremely fast kinetics for gas hydrate formation and release.  相似文献   

12.
Storage and transportation of natural gas as gas hydrate (“gas-to-solids technology”) is a promising alternative to the established liquefied natural gas (LNG) or compressed natural gas (CNG) technologies. Gas hydrates offer a relatively high gas storage capacity and mild temperature and pressure conditions for formation. Simulations based on the van der Waals–Platteeuw model and molecular dynamics (MD) are employed in this study to relate the methane gas content/occupancy in different hydrate systems with the hydrate stability conditions including temperature, pressure, and secondary clathrate stabilizing guests. Methane is chosen as a model system for natural gas. It was found that the addition of about 1% propane suffices to increase the structure II (sII) methane hydrate stability without excessively compromising methane storage capacity in hydrate. When tetrahydrofuran (THF) is used as the stabilizing agent in sII hydrate at concentration between 1% and 3%, a reasonably high methane content in hydrate can be maintained (∼85–100, v/v) without dealing with pressures more than 5 MPa and close to room temperature.  相似文献   

13.
Phase equilibria in the system H2-CH4-H2O are investigated by means of differential thermal analysis within hydrogen concentration range 0-70 mol % and at a pressure up to 250 MPa. All the experiments were carried out under the conditions of gas excess. With an increase in hydrogen concentration in the initial gas mixture, decomposition temperature of the formed hydrates decreased. X-ray diffraction patterns and Raman spectra of the quenched hydrate samples obtained at a pressure of 20 MPA from a gas mixture containing 40 mol % hydrogen were recorded. It turned out that the hydrate has cubic structure I under these conditions. The Raman spectra showed that hydrogen molecules are not detected in the hydrate within the sensitivity of the method, that is, almost pure methane hydrate is formed. The general view of the phase diagram of the investigated system is proposed. A thermodynamic model was proposed to explain a decrease in hydrate decomposition temperature in the system with an increase in the concentration of hydrogen in the initial mixture.  相似文献   

14.
Because of the associated experimental difficulties, natural gas hydrate behavior in black oil is poorly understood despite its grave importance in deep-water flow assurance. Since the hydrate cannot be visually observed in black oil, traditional methods often rely on gas pressure changes to monitor hydrate formation and dissociation. Because gases have to diffuse through the liquid phase for hydrate behavior to create pressure responses, the complication of gas mass transfer is involved and hydrate behavior is only indirectly observed. This pressure monitoring technique encounters difficulties when the oil phase is too viscous, the amount of water is too small, or the gas phase is absent. In this work we employ proton nuclear magnetic resonance (NMR) spectroscopy to observe directly the liquid-to-solid conversion of the water component in black oil emulsions. The technique relies on two facts. The first, well-known, is that water becomes essentially invisible to liquid state NMR as it becomes immobile, as in hydrate or ice formation. The second, our recent finding, is that in high magnetic fields of sufficient homogeneity, it is possible to distinguish water from black oil spectrally by their chemical shifts. By following changes in the area of the water peak, the process of hydrate conversion can be measured, and, at lower temperatures, the formation of ice. Taking only seconds to accomplish, this measurement is nearly direct in contrast to conventional techniques that measure the pressure changes of the whole system and assume these changes represent formation or dissociation of hydrates - rather than simply changes in solubility. This new technique clearly can provide accurate hydrate thermodynamic data in black oils. Because the technique measures the total mobile water with rapidity, extensions should prove valuable in studying the dynamics of phase transitions in emulsions.  相似文献   

15.
Direct measurements of the dissociation behaviors of pure methane and ethane hydrates trapped in sintered tetrahydrofuran hydrate through a temperature ramping method showed that the tetrahydrofuran hydrate controls dissociation of the gas hydrates under thermodynamic instability at temperatures above the melting point of ice.  相似文献   

16.

The formation of gaseous (gas) hydrates for storage, separation and transportation application is essential. In this regard, a comprehensive study of this case is essential. Semi-clathrate hydrates have higher temperature stability and are formed in a stable range. The purpose of this study is review the experimental and modeling of the semi-clathrate hydrates, to investigate the equilibrium conditions for the formation/dissociation of them based on the type of thermodynamic promoters like TBAB, TBAC, TBAF, TBANO3 and TBP groups. This review is consist of 4 overall section, at first an introduction to semi-clathrate hydrates has defined. After that, the experimental research has discussed through different gas systems such as CO2, CH4, N2, H2 etc. Also, the target of each study, like the CO2 capture, separation of CH4, formation/dissociation equilibrium conditions, are expressed. Then, in the modeling section, the different types of thermodynamic modeling like, equaling fugacity, intelligence computing, Gibbs free energy minimization and Chen-Guo method are collected. At final section, a comparison between types of promoter showed that the addition of TBAF to aqueous solution has the best promotion effect on the CO2 clathrate hydrate formation. Also, the results of comparing the concentration of promoters have shown that up to a certain amount of TBAB, the salt's role as a promoter and by addition concentration of promoter, has an inhibition effect. Also, besides the results of the comparison different promoters on equilibrium conditions of different gaseous hydrates, have indicated that, TBAB has the most significant impact on carbon dioxide hydrate.

  相似文献   

17.
We describe a technique to modify protein solubility and optimize enzyme activity in reversed micellar solutions. The technique is based on the ability of hydrates of natural gas to form in the micro-aqueous phase. Clathrate hydrates are crystalline inclusions of water and gas, and their formation in bulk water has traditionally been studied with relevance to natural gas recovery. We have found that hydrates can form in the environment of the microaqueous pools of reversed micelles, and that their extent of formation can be well controlled through the thermodynamic variables of temperature and pressure. Additionally, formation of hydrates affects the size and aggregation number of the micelles, and thus influences the solubility and conformation of encapsulated proteins. We demonstrate how the concept can be used in two applications: (i) protein extraction into reversed micelles and subsequent recovery, and (ii) optimization of enzyme activity in reversed micelles.  相似文献   

18.
An inherent problem with natural gas production or transmission is the formation of gas hydrates, which can lead to safety hazards to production/ transportation systems and to substantial economic risks. Therefore, an understanding of conditions where hydrates form is necessary to overcome hydrate related issues. Over the years, several models requiring more complicated and longer computations have been proposed for the prediction of hydrate formation conditions of natural gases. For these reasons, it is essential to develop a reliable and simple-to-use method for oil and gas practitioners. The purpose of this study is to formulate a novel empirical correlation for rapid estimation of hydrate formation condition of sweet natural gases. The developed correlation holds for wide range of temperatures (265–298 K), pressures (1200 to 40000 kPa) and molecular weights (16−29). New proposed correlation shows consistently accurate results across proposed pressure, temperature and molecular weight ranges. This consistency could not be matched by any of the widely accepted existing correlations within the investigated range. For all conditions, new correlation showed average absolute deviation to be less than 0.2% and provided much better results than the widely accepted existing correlations.  相似文献   

19.
针对深水钻井中水基钻井液易形成天然气水合物从而导致钻井作业无法正常进行的问题,利用自行设计研制的气体水合物反应装置,模拟深水钻井温度压力条件,对水基钻井液添加剂进行了天然气水合物形成的实验研究。分析了各实验体系形成水合物的过冷度。以过冷度为评价指标,评价了各种钻井液添加剂在深水钻井水合物形成过程中的作用。结果表明,在钻井液使用的加量范围内,阳离子聚丙烯酰胺CPAM、两性离子聚合物FA367等对天然气水合物的形成有抑制作用,且随着加量的增加抑制作用增强;磺甲基丹宁SMT、木质素磺酸盐FCLS对天然气水合物的形成有微弱的促进作用,但影响不大。聚合物添加剂的离子类型对天然气水合物的形成影响不大。  相似文献   

20.
Gas hydrates represent an attractive way of storing large quantities of gas such as methane and carbon dioxide, although to date there has been little effort to optimize the storage capacity and to understand the trade‐offs between storage conditions and storage capacity. In this work, we present estimates for gas storage based on the ideal structures, and show how these must be modified given the little data available on hydrate composition. We then examine the hypothesis based on solid‐solution theory for clathrate hydrates as to how storage capacity may be improved for structure II hydrates, and test the hypothesis for a structure II hydrate of THF and methane, paying special attention to the synthetic approach used. Phase equilibrium data are used to map the region of stability of the double hydrate in PT space as a function of the concentration of THF. In situ high‐pressure NMR experiments were used to measure the kinetics of reaction between frozen THF solutions and methane gas, and 13C MAS NMR experiments were used to measure the distribution of the guests over the cage sites. As known from previous work, at high concentrations of THF, methane only occupies the small cages in structure II hydrate, and in accordance with the hypothesis posed, we confirm that methane can be introduced into the large cage of structure II hydrate by lowering the concentration of THF to below 1.0 mol %. We note that in some preparations the cage occupancies appear to fluctuate with time and are not necessarily homogeneous over the sample. Although the tuning mechanism is generally valid, the composition and homogeneity of the product vary with the details of the synthetic procedure. The best results, those obtained from the gas–liquid reaction, are in good agreement with thermodynamic predictions; those obtained for the gas–solid reaction do not agree nearly as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号