首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
The corrosion process commonly limits the use of copper in practical applications. The use of corrosion inhibitors is one of the effective methods to reduce the corrosion rate of copper. In this research, the inhibition effect of acridine orange (3,6-bis(dimethylamine)acridine) (AcO) for the protection of copper in 0.5 ?M ?H2SO4 solution was studied. For this aim, the change of open circuit potential with exposure time (Eocp-t), electrochemical impedance spectroscopy (EIS), linear polarization resistance (LPR), anodic and cathodic potentiodynamic polarization measurements (PP) and chronoamperometry (CA) techniques were used. Some quantum chemical parameters (EHOMO, ELUMO and dipole moment) were calculated and discussed. The AcO film formed over the copper surface was examined by SEM, EDX, AFM and contact angle measurements. The electrochemical data showed that AcO is an effective corrosion inhibitor even at low concentrations (ranging between 99.1% and %99.4 ?at concentrations from 0.01 ?mM to 1 ?mM). The corrosion rate of copper decreases in the presence of the inhibitor by reducing both anodic and cathodic rates, which is depended on its concentration. This compound behaves as mixed-type corrosion inhibitors with predominantly cathodic type. Its adsorption on the copper surface obeys Langmuir adsorption isotherm. The value of adsorption equilibrium constant (Kads) and the standard free energy of adsorption were ΔGads 1.298 x 103 ?M?1 and -27.71 ?kJ/mol in the case of 0.5 ?M ?H2SO4 solution containing 1.0 ?mM AcO, which shows the adsorption is high and spontaneous. The adsorbed inhibitor film over the metal increase contact angle of the surface, which suggests the more hydrophobic properties of the surface are increasing coming from the orientation of hydrophobic sites to the electrolyte. The zero charge potential (Epzc) studies showed that the surface charge of the metal is positive in the corrosive media containing the inhibitor. Quantum chemical calculations showed that the binding of inhibitor molecules to the metal surface takes place through N atoms of the inhibitor.  相似文献   

2.
2-Allyl-p-mentha-6,8-dien-2-ols P1P3 synthesized from carvone P are tested as corrosion inhibitors of steel in 1 M HCl using weight loss measurements, potentiodynamic polarisation and impedance spectroscopy (EIS) methods. The addition of 2-allyl-p-mentha-6,8-dien-2-ols reduced the corrosion rate. Potentiodynamic polarisation studies clearly reveal that the presence of inhibitors does not change the mechanism of hydrogen evolution and that they act essentially as cathodic inhibitors. 2-Allyl-p-mentha-6,8-dien-2-ols tested adsorb on the steel surface according to Langmuir isotherm. From the adsorption isotherm some thermodynamic data for the adsorption process are calculated and discussed. EIS measurements show the increase of the charge-transfer resistance with the inhibitor concentration. The highest inhibition efficiency (92%) is obtained for P1 at 3 g/L. The corrosion rate decreases with the rise of temperature. The corresponding activation energies are determined.  相似文献   

3.
Electrochemical frequency modulation (EFM), electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization have been used to investigate the inhibition effect of a new pyrimidine heterocyclic derivative, namely 2-mercapto-4-(p-methoxyphenyl)-6-oxo-1,6-dihydropyrimidine-5-carbonitrile (MPD) on copper corrosion in 3.5% NaCl solutions at 25 ± 1 °C. The electrochemical investigations showed that MPD gives sufficient inhibition against copper corrosion in 3.5% NaCl solutions. Potentiodynamic polarization measurements have shown that the MPD inhibit both the cathodic and anodic processes and thus it classified as mixed-type inhibitor. EIS measurements indicate that the values of constant phase elements (CPEs) tend to decrease and both charge-transfer resistance and inhibition efficiency tend to increase by increasing the inhibitor concentration. Electrochemical kinetic parameters obtained using EFM methods were comparable with that calculated from traditional measurements (EIS and potentiodynamic polarization). Molecular simulation technique was used to investigate the adsorption configuration of MPD on copper surface. Number of electrons transferred from MPD to the copper surface was calculated by semi-empirical quantum chemical calculations.  相似文献   

4.
Inhibition of corrosion of copper in 2M HNO3 by N-1-naphthylethylenediamine dihydrochloride monomethanolate (N-NEDHME) has been studied by use of weight loss, electrochemical polarization, and electrochemical impedance spectroscopy (EIS) measurements. The result obtained reveal that this organic compound is a very good inhibitor and its inhibition efficiency increases with increasing concentration, reaching 94% at 10?3?M at 303?K. The potentiodynamic polarization study indicated that this compound acts as a cathodic type corrosion inhibitor. EIS results indicate that the change in the impedance properties (R t and C dl) with concentration of inhibitor was because of the formation of a protective layer on the surface of copper. Quantum chemical calculations using DFT at the B3LYP/6-31G* level of theory was further used to calculate some electronic properties of the molecule in order to ascertain any correlation between the inhibitive effect and molecular structure of N-NEDHME. The effect of temperature between 303 and 343?K and calculation of activation data will be discussed in Part 2.  相似文献   

5.
The effects of expired lansoprazole and rabeprazole on the corrosion protection of carbon steel in phosphoric acid (3.0 ?M) solution were examined by Tafel polarization and electrochemical impedance spectroscopy (EIS). Lansoprazole and rabeprazole concentrations (0.5, 1.0, 5.0 and 10 ?mM) in acid solution were raised, which improved corrosion prevention. Both lansoprazole and rabeprazole as the mixed inhibitors retarded the anodic and cathodic processes, as indicated by polarization data. With the increasing temperature in the range of 25–55 ?°C, the inhibition efficiency drops from 92.9% to 69.3% for lansoprazole and from 94.8% to 74.2% for rabeprazole. The major decrease in the inhibition efficiency with ascending temperature proved the physisorption of the drugs. The activation energies for carbon steel corrosion in H3PO4solution were enhanced from 41.6 ?kJ ?mol?1 to 81.9 ?kJ.mol?1and 85.9 ?kJ ?mol?1 for lansoprazole and rabeprazole, respectively. The influence of temperature on the corrosion process of carbon steel in the acid medium was used to derive the thermodynamic quantities of corrosion. The adsorption of both lansoprazole and rabeprazole on carbon steel followed the Langmuir adsorption isotherm. The polarization data yielded outcomes that were consistent with the results arising from impedance measurements. The theoretical study of both lansoprazole and rabeprazole was done by a density functional theory (DFT) approach to realize the effects of molecular structure on their inhibitive action. Both lansoprazole and rabeprazole contain a higher EHOMO, a lower ELUMO and a lower energy gap than some inhibitors earlier reported as good corrosion inhibitors in the literature.  相似文献   

6.
The corrosion inhibition efficiency of 3-acetylpyridine-semicarbazide (3APSC) on carbon steel (CS) in 1.0 M HCl solution has been investigated using weight loss measurements, electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization studies. The results show that inhibition efficiency on metal increases with the inhibitor concentration. 3APSC exhibited marked inhibition towards carbon steel in HCl medium even at low concentrations. The adsorption of inhibitor on the surfaces of the corroding metal obeys the Langmiur isotherm and thermodynamic parameters (K ads, ?G ads 0 ) were calculated. Activation parameters of the corrosion process (E a, ?H* and ?S*) were also calculated from the corrosion rates. Polarization studies revealed that 3APSC act as a mixed-type inhibitor. Surface analysis of the metal specimens was performed by scanning electron microscopy.  相似文献   

7.
The corrosion of reinforced steel in concrete in 3.5 % NaCl without and with Prosopis juliflora extract at different time intervals has been studied using various techniques including electrochemical impedance spectroscopy (EIS), potentiodynamic polarization study (PDS) and atomic force microscopy (AFM). The results obtained by electrochemical measurements (EIS and PDS) showed that the extract inhibited corrosion by forming a protective layer on the surface of the embedded steel and by altering the reactions of the cathodic and anodic sites of the steel. Further, the AFM images supported the formation of the protective layer over the surface of the embedded steel by inhibitor molecules. The adsorption of the inhibitor molecules over the surface of the embedded steel obeyed the Temkin isotherm. Density functional theory (DFT) calculations for major ingredients of the extract have been carried out. From the results of the DFT calculations, the influence of major ingredients on the anti–corrosion potential of the plant extract has been correlated. The mechanism of inhibitive action of the P. juliflora extract has also been proposed.  相似文献   

8.
The efficiency of hexa methylene diamine tetra methyl-phosphonic acid (HMDTMP), as corrosion inhibitor for carbon steel in 0.5 M HCl, has been determined by gravimetric and electrochemical measurements. Polarization curves indicate that the compound is a mixed inhibitor, affecting both cathodic and anodic corrosion currents. Adsorption of HMDTMP derivatives on the carbon steel surface is in agreement with the Langmuir adsorption isotherm model, and the calculated Gibbs free energy value confirms the chemical nature of the adsorption. EIS results show that the charge in the impedance parameters (Rt and Cdl) with concentrations of HMDTMP is indicative. The adsorption of this molecule leads to the formation of a protective layer on carbon steel surface. The electrochemical results have also been supplemented by surface morphological studies.  相似文献   

9.
In this study, the broad-spectrum antimicrobial property of dodecyl dimethyl benzyl ammonium chloride (DDBAC) was investigated against three species of bacteria, Lysinibacillus sphaericus (L. sphaericus), Acinetobacter lwoffii (A. lwoffii), and Sediminibacterium salmoneum (S. salmoneum) isolated and purified from a naval aircraft fuel system. Through the inhibition zone method and minimum inhibitory concentration test, DDBAC was found to have a good antimicrobial performance with a minimum inhibitory concentration of 64 mg/L. The influence of DDBAC on the corrosion behavior of fuel tank material was evaluated by electrochemical measurements, such as polarization curve and electrochemical impedance spectroscopy (EIS). The polarization curve indicated that DDBAC suppressed anodic and cathodic reactions as a mixed-type corrosion inhibitor, and the inhibition efficiency was 68.38% at the concentration of 80 mg/L after 28 days of immersion. The EIS results showed that DDBAC inhibited the corrosion of 7B04 aluminum alloy in the concentration range of 40–120 mg/L. The DDBAC adsorption on the aluminum alloy surface was in agreement with the modified Langmuir adsorption isotherm model. The quantum chemical calculations proved that a lone pair of electrons of nitrogen atoms in DDBAC were able to form coordinate bonds with the empty orbital in aluminum, resulting in a tight chemisorption layer on the aluminum alloy surface and corrosion inhibition.  相似文献   

10.
The inhibiting behavior of bis-(2-benzothiazolyl)-disulfide on mild steel corrosion was evaluated in 1?M HCl solution. Weight loss, potentiodynamic polarization, and electrochemical impedance spectroscopy (EIS) techniques were used in this study. In EIS technique, by performing Kramers–Kronig transformations, the experimental results validated, before fitting any theoretical model on them. The obtained results showed that the inhibition efficiency (%IE) increases by increasing the concentration of bis-(2-benzothiazolyl)-disulfide up to 2.02?×??0???M (%IE?~??2??8). Between the results obtained from various used techniques, a good agreement was found. Polarization curves indicate that the inhibition of the inhibitor is a mixed anodic–cathodic nature and Langmuir isotherm is found as an accurate isotherm describing the adsorption behavior. It also found that its inhibition mechanism of bis-(2-benzothiazolyl)-disulfide is at the interval of physical adsorption and chemical binding. The inhibition efficiency of the inhibitor decreased by rising of temperature in the range of 25??5?°C and these results, verified adsorption behavior of the inhibitor.  相似文献   

11.
Argan hulls extract (AHE) was tested as corrosion inhibitor for mild steel in 1?M HCl. Weight loss measurements, potentiodynamic polarization, and electrochemical impedance spectroscopy (EIS) revealed that inhibiting action increased with increasing concentration of the inhibitor. The highest efficiency 97.3% was obtained at 5?g/L AHE. There was good agreement between gravimetric and electrochemical methods (potentiodynamic polarization and EIS). Results obtained from EIS measurements were analyzed to model the corrosion-inhibition process by use of the appropriate equivalent circuit model; a constant phase element was used. Polarization measurements show also that AHE acts as good mixed inhibitor. AHE is adsorbed on the steel surface in accordance with a Langmuir isotherm adsorption model.  相似文献   

12.
The effect of some prepared compounds, namely 3,5-dimethyl-1H-pyrazole (P1), 3(5)-amino-5(3)-methylpyrazole (P2), and 1′,3,5,5′-tetramethyl-1′H-1,3′-bipyrazole (P3), on the corrosion behaviour of steel in 1.0 M hydrochloric acid solution as corrosive medium has been investigated at 308 K using weight-loss measurement, potentiodynamic polarisation, linear polarisation, and impedance spectroscopy (EIS). Generally, inhibition efficiency of the investigated compounds was found to depend on the concentration and nature of the inhibitor. P3 was a better inhibitor than P1 and P2, and its inhibition efficiency increased with increasing concentration of inhibitor, attaining 94% above 10−3  M. Potentiodynamic polarisation studies clearly reveal that P3 acts essentially as a cathodic inhibitor. E (%) values obtained from different methods are in reasonably good agreement. EIS measurements show an increase of transfer resistance with inhibitor concentration. Partial π-charge on atoms was calculated. Correlation between the highest occupied molecular orbital energy E HOMO and inhibition efficiencies was sought. The temperature effect on the corrosion behaviour of steel in 1.0 M HCl without and with different concentrations of inhibitor P3 was studied in the temperature range 308 to 343 K. Thermodynamic data, for example heat of adsorption ( \Updelta H\textads° \Updelta H_{\text{ads}}^{^\circ } ), entropy of adsorption ( \Updelta S\textads° \Updelta S_{\text{ads}}^{^\circ } ) and free energy of adsorption ( \Updelta G\textads° \Updelta G_{\text{ads}}^{^\circ } ) were calculated by use of thermodynamic equations. Kinetic activation data, for example E a, ΔH*, ΔS* and pre-exponential factor, were calculated, and are discussed. The inhibiting action of P3 on the corrosion of steel in 1–10 M hydrochloric acid was also studied by weight-loss measurement. The rate constant and reaction constant were calculated for the corrosion reactions. Adsorption of P3 on the steel surface in 1.0 M HCl follows the Langmuir isotherm model.  相似文献   

13.
The efficiency of Laurus nobilis leaves?? extract as a corrosion inhibitor for mild steel in acidic medium (1?M H2SO4) was investigated by use of the electrochemical techniques potentiodynamic polarization, electrochemical impedance spectroscopy, and polarization resistance measurements. According to the experimental results, L. nobilis extract acts as a good corrosion inhibitor. In the presence of the inhibitor, corrosion potential shifted toward a more negative value than for the blank solution. Inhibitor efficiency increased with increasing inhibitor concentration, as expected. According to the potentiodynamic polarization results the corrosion of mild steel increased with increasing temperature both in the presence and absence of the inhibitor. The activation energy (E a) of the corrosion process was calculated from the variation of corrosion current density with temperature.  相似文献   

14.
A corrosion inhibitor namely N′-(4-hydroxy-3-methoxybenzylidene) nicotinohydrazide was synthesized and the inhibition efficiency of the investigated inhibitor toward the mild steel corrosion in 1 M HCl was studied. The anticorrosion effect has been investigated by weight loss (WL) techniques and electrochemical analysis includes potentiodynamic polarization (PDP) studies and electrochemical impedance spectroscopy (EIS). The current investigation has demonstrated that the tested inhibitor is suitable in corrosive environment and the inhibitive efficacy up to 97% in 1 M HCl. PDP measurements showed that the nicotinohydrazide is a mixed type inhibitor. EIS measurements showed that an increase in the inhibitory concentration leads to an increase in the charge transfer resistance (Rct) and a decrease in the double-layer capacitance (Cdl). Experimental results for the inhibitory performance of WL methods and electrochemical techniques (PDP and EIS) are in good agreement. The tested inhibitor molecules adsorbed on the surface of mild steel in a hydrochloric acid solution followed Langmuir’s isothermal adsorption. Quantum chemical parameters based on density function theory (DFT) techniques were conducted on oxygen/nitrogen-bearing heterocyclic molecule employed as a corrosion inhibitor for mild steel in HCl to evaluate the correlation between the inhibitor structure and inhibitory performance. The parameters including the energy gap (ΔE), dipole moment (μ), electronegativity (χ), electron affinity (A), global hardness (η), softness (σ), ionization potential (I), the fraction of electrons transferred (ΔN), the highest occupied molecular orbital energy (EHOMO), and the lowest unoccupied molecular orbital energy (ELUMO) were also calculated and were in good agreement with the experimental results.  相似文献   

15.
The inhibitive action of 4-methyl pyrazole (4MP) against the corrosion of iron (99.9999%) in solutions of hydrochloric acid has been studied using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). At inhibitor concentration range (10?3–10?2 M) in 1.0 M acid, the results showed that 4MP suppressed mainly the anodic processes of iron corrosion in 1.0 M HCl by adsorption on the iron surface according to Temkin adsorption isotherm. Both potentiodynamic and EIS measurements reveal that 4MP inhibits the iron corrosion in 1.0 M HCl and that the efficiency increases with increasing inhibitor concentration. Data obtained from EIS were analyzed to model the corrosion inhibition process through an equivalent circuit.  相似文献   

16.
The effect of triphenyltin2–thiophene carboxylate (TTC) on the corrosion of steel in hydrochloric acid medium was studied using gravimetric, electrochemical polarisation and electrochemical impedance spectroscopy (EIS) measurements. The percentage inhibition efficiency was found to increase with increasing concentration of inhibitor to reach 97% at 10?3 M. Polarisation study shows that TTC is an efficient inhibitor and acts as a mixed-type inhibitor. EIS results indicate the increase of resistance transfer (RT) and the decrease of double layer capacitance (Cdl) with TTC concentration. Triphenyltin2–thiophene carboxylate molecules lead to the formation of a protective layer on the surface of steel. The inhibitor is adsorbed on the steel surface according to Langmuir isotherm.  相似文献   

17.
The inhibition effect of curcumin on the corrosion of mild steel in 1.0 M HCl solution was studied by weight loss, potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS) methods. The experimental results suggest that this compound is an efficient corrosion inhibitor and the inhibition efficiency increases with the increase in inhibitor concentration. Adsorption of this compound on mild steel surface obeys Langmuir isotherm. Also the objective of this work is to attempt to find relationships between electronic structure and inhibition efficiency. The structural parameters, such as the frontier molecular orbital energies (E HOMO and E LUMO), gap of energy ΔE, from the molecule to iron as well as electronic parameters such as Mulliken atomic populations were calculated and discussed using the Density Functional Theory method (DFT).  相似文献   

18.
The inhibition efficiency of 2-Pyrrolidin-1-yl-1,3-thiazole-5-carboxylic acid (PTCA) against mild steel (MS) corrosion was investigated in acidic solution by using quantum chemical calculations based on Density Functional Theory (DFT) method and electrochemical measurements. The electrochemical impedance spectroscopy (EIS), potentiodynamic, potential zero charge (pzc) analysis and electrochemical noise (EN) measurements at various concentrations (from 0.1 to 10 mM) and immersion times were utilized in experimental part. The surface analysis was achieved scanning electron microscope (SEM) and contact angle measurements in the absence and presence of 10 mM PTCA. According to DFT results, PTCA exhibited 3.737 eV band gap and 8.130 Debye dipole moment which were a signal of potentially convenient corrosion inhibitor properties. PTCA has a remarkable corrosion inhibition capability to mild steel, which inhibited both anodic and cathodic corrosion rates, relying on it's physically adsorption on the metal solution interface and protection ability was increased with increasing PTCA concentration. The obtained adsorption equilibrium constant was 11.11 × 103 M-1 and calculated standard free energy of adsorption was ?33.03 kJ mol?1. The determined activation energy values were 55.58 kJ mol?1 and 96.86 kJ mol?1 in 0.5 M HCl in the absence and presence of 10 mM PTCA, respectively. PTCA demonstrated a strong inhibition efficiency of 98.3%, after 168 h immersion, according to the EIS results. As a consequently, we recommend that PTCA is a convenient inhibitor in 0.1 M HCl for mild steel protection against corrosion.  相似文献   

19.
The essential oil of the aerial parts of Lavandula multifida L., collected in Errachidia region (three samples) in southeast Morocco, was extracted by hydrodistillation and analyzed by GC and GC-MS. The oil was predominated by carvacrol (57.9–59.0%). L. multifida oil was tested as corrosion inhibitor of C38 steel in 0.5 M H2SO4 using weight loss measurements, electrochemical polarization, and EIS methods. The results obtained by measurements of weight loss showed that inhibition efficiency increases with inhibitor concentration to attain 72.2% at 2 g/l of oil at 298 K. Polarization curves revealed that L. multifida oil acts as mixed type inhibitor. The temperature effect on the corrosion behavior of steel in 0.5 M H2SO4 without and with the inhibitor at 2 g/l was studied in the temperature range from 303 and 343 K. The adsorption of inhibitor on the C38 steel surface was found to be a spontaneous process and to obey Langmuir’s adsorption isotherm. The associated activation energy has been determined.  相似文献   

20.
The effect of adding 2-phenylimidazo[1,2-a]pyridine-3-carbaldehyde derivative named (P2), newly synthesized on the electrochemical behavior of C38 steel in molar hydrochloric acid was investigated by using the weight-loss method, potentiodynamic polarization, and electrochemical impedance spectroscopy (EIS) measurements. EIS results show that the transfer resistance increases with the increase of concentration of P2 and it also had an inhibiting effect on C38 steel corrosion in HCl solutions. Weight-loss essays confirm that the corrosion rate decreases as the P2 concentration increases. The inhibition efficiency for this compound studied increased with the increase in the inhibitor concentrations to attain 91.7 % at the 10?3 M of P2. The potentiodynamic polarization curves indicated that P2 acted as a mixed-type inhibitor in hydrochloric acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号