首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
介电限域效应对SnO_2纳米微粒光学特性的影响   总被引:1,自引:0,他引:1  
半导体纳米微粒作为一种新兴材料,在声、光、电、磁、热及催化等方面显示出全新的异于体相材料和分子或原子的特性,在理论和实验上已引起。们极大的兴趣I‘,’].当纳米微粒的尺寸接近或小于激于玻尔半径时,表现出明显的量子尺寸效应,其表现光学能隙变大,一些半导体粒子如CdS,Cdse等纳米微粒的量予尺寸效应已经被人们利用有效质量近似模型做了定性解释。八但是,由于纳米微粒尺寸小,具有相对大的表面积,因而粒子周围的介质可以强烈地影响它们的光学性质【’,‘1.我们采用胶体化学方法,对SnO。阶电常数为13)半导体纳米微粒…  相似文献   

2.
铜和金纳米线阵列上SCN-的表面增强拉曼光谱   总被引:3,自引:0,他引:3  
姚建林 《电化学》1999,5(4):371-376
纳米材料的制备和性质研究已成为化学和物理等领域中的热点[1~4].例如,一些纳米尺度的金属表现出极高的催化活性;一些低维的半导体纳米点(零维)、线(一维)、面(二维)材料被认为在半导体信息工业中将占有举足轻重的地位.最近有关金属和半导体纳米线的研究正在兴起,其特殊的电学和光学性质引起了广泛兴趣,并有可能制备成为各类尺寸极小的纳米电极[2].迄今已有多种技术用于研究和表征金属以及半导体纳米线的特殊性质[2,5~9],其中紫外可见吸收光谱和荧光光谱是广泛使用的表征纳米线光学性质的技术[2,5,6].…  相似文献   

3.
通常人们把粒径1~100 nm之间的金属、半导体、氧化物及各种化合物的粒子或者粒子的集合体称为纳米粒子。近年来的纳米粒子化学和物理的迅速发展已经证实:随着原子或分子簇尺寸的减小,表面原子的比例逐渐增大,粒子表现了与块状材料不同的特性,其粒子显示出以“量子尺寸效应”为主的特点,特性表现出种种异常[1,2]。  相似文献   

4.
介绍了半导体纳米晶体(亦称量子点)的结构特征和光致发光特点,并与有机荧光染料分子的光致发光性质作了对比。结合本实验室所做的工作,对半导体纳米晶体用于生物材料的连接、标记和检测作了综述。  相似文献   

5.
潘睿  郑倩  彭蜀  何书引 《化学教育》2020,41(7):51-55
以中学化学所涉及的“金属”物质教学内容为例,运用MS分子模拟软件内嵌的Visualizer,Build 及Symmetry property 等3个功能模块,在不同尺度(从埃、纳米、微米到厘米)范围内,实现对“金属原子结构”“金属晶体”及“金属性质(密度)”的连续性可视化展示,帮助学生从原子的视角深入理解化学物质微观结构与宏观性质之间的本质相关性。  相似文献   

6.
多金属氧酸盐是一类纳米级金属-氧多核配合物,可通过变换抗衡阳离子、杂原子、配原子等方法从原子、分子水平上进行物理或化学修饰,与不同的有机分子结合后可以获得具有特定功能和性质的化合物.  相似文献   

7.
张敏  魏娟娟  欧阳津  那娜 《分析试验室》2022,(12):1400-1410
不同于纳米和亚纳米催化,单原子催化在负载极低金属含量的同时能极大地提高金属原子的利用率,具有更优越的催化性能。单原子催化剂(SACs)是一种特殊的负载型金属催化剂,指载体上的所有金属组分都以单原子分散的形式存在。当催化剂的尺寸是单原子级别时,其原子利用率达到了百分百,此时其能级结构、电子结构会发生根本性变化,表面自由能急剧增大,催化活性随之增加;但孤立的金属单原子容易聚集导致催化活性下降,因此能锚定单原子的载体尤为重要。载体既可以起到固定单原子的作用,又可以协同单原子提高反应催化活性,是催化领域的研究前沿。本文基于Pt单原子催化剂具有贵金属用量少、活性高、稳定性好、金属-载体相互作用强等优点,介绍了Pt单原子的几种载体,包括氧化物材料,有机金属框架(MOF)材料,碳基材料以及其他材料。对Pt单原子的表征方法以及Pt单原子催化剂在电催化析氢反应(HER),氧还原反应(ORR),CO氧化及其他方面的应用进行了概述,对Pt单原子材料的发展趋势进行了展望。  相似文献   

8.
侯博  刘拥军  袁波  蒋峰芝 《化学通报》2008,71(4):272-280
对半导体纳米晶的概念、性质、应用前景进行了概述,详细介绍了以ZnS、ZnSe半导体纳米晶体为代表的由IIB-VI族原子组成的低毒半导体纳米晶的制备、光谱学性质及其当前在生物标记领域的应用.  相似文献   

9.
运用密度泛函理论结合非平衡格林函数的方法对MgB2直线原子链与两半无限Au(100)电极构成纳米结点的电子输运特性进行了第一性原理计算.在模拟Au-MgB2-Au纳米结点的拉伸过程中,计算了结点在不同距离下的结合能与电导.结果发现结点的Au-B键长为1.90A,B-Mg键长为2.22A时,结合能最大,结构最稳定,此时结点平衡电导为0.51G0(G0=2e^0/h).通过计算投影态密度发现电子通过结点时主要是通过B、Mg原子的px和py电子轨道形成的π键进行传输的.在-1.5~1.5V的电压范围内,结点的电流-电压近似为线性关系,表现出类似金属的导电性质,而当正负电压高于15V时,电流对称性逐渐减小,即存在负微分电阻效应,从不同电压下透射谱的变化对负微分电阻现象进行了分析与讨论.  相似文献   

10.
中介尺度Au纳米团簇熔化的分子动力学模拟   总被引:2,自引:0,他引:2  
采用分子动力学模拟技术,研究了原子个数为16~8628的 Au纳米团簇的熔化过程.采用 Johnson的EAM (embedded atom method) 模型,模拟结果表明,金属纳米团簇存在一中介尺度区域.对Au纳米团簇而言,当原子个数N >456时,团簇的热力学性质与团簇尺寸呈线性关系,熔化首先从表面开始,逐步向中心区域推进,且满足Tmb-Tmc(N)=aN(-1/3)的关系.另外,计算了中介区域的团簇的尺寸、熔化温度、表面能、熵、焓等热力学量以及均方根位移(RMSD)等动力学量,为研究纳米团簇提供定量数据.  相似文献   

11.
《Solid State Sciences》2012,14(5):622-625
Hematite nanoparticles have been synthesized via reverse microemulsion route at room temperature. The microemulsion system, contained water, chloroform, 1-butanol, and surfactant, was combined with iron nitrate solution to result iron oxide nanoparticles precipitation. Three technical surfactants, with different structures and HLB (hydrophile–lipophile balance) values were employed and the effects of the HLB values on the hematite particle size were investigated. The prepared particles were evaluated by BET, XRD and TEM techniques. These results showed that the iron oxide particle size and particle size distribution increased with increasing surfactant HLB values.  相似文献   

12.
Iron oxide particles were micronized by supercritical carbon dioxide (CO2) as an antisolvent in a batch gas antisolvent (GAS) process. In the present study, the feasibility of GAS process to micronize the iron oxide particles using dimethyl sulfoxide (DMSO) as a solvent was investigated. In this direction, particle size and morphology changes were investigated with changing solution pressure (80–150 bar), temperature (308.15–328.15 K), and concentration (1.5–6 g/l). Based on the different experimental conditions, the particle size of the original iron oxide was decreased in the range of 17.25 to 4.23 µm, which shows a the success of the GAS process to reduce the particle size of the intact iron oxide particles. Simultaneously, morphology changes were observed starting from the irregular morphology for synthesized particles to more regular shapes that included fused and spherical-fused particles.  相似文献   

13.
Micrometer magnetic hybrid particles are of great interest in biomedical field, and various morphologies have been prepared via encapsulation processes. Regarding submicron, only few processes have been investigated and the most recent one leading to highly magnetic submicron magnetic hybrid particles is based on oil in water magnetic emulsion (MES) transformation. The encapsulation of magnetic iron oxide nanoparticles forming oil in water MES was investigated using different styrene/cross‐linker divinylbenzene volume ratio in the presence of potassium persulfate initiator. The encapsulation performed in this work is basically conducted by using well‐defined oil in water MES as a seed in radical emulsion polymerization. The chemical composition, morphology, iron oxide content, magnetic properties, electrokinetic properties, particle size, and size distribution of the prepared magnetic hybrid particles were examined using various techniques. The desired perfect magnetic core and polymer shell morphology were successfully obtained, and the final magnetic hybrid particles are superparamagnetic in nature and exhibit high iron oxide content (64 wt %). Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
In a series of experiments, we coated iron oxide nanoparticles, which were originally stabilized with lauric acid, with a polymer layer of Octadecyltrichlorosilane (OTS). Characterization of the different coated nanoparticles was accomplished by Static and Dynamic Light Scattering, acoustic spectroscopy, and Atomic Force Microscopy. In various experiments, we systematically investigated the effect of different parameters such as the OTS concentration and iron oxide content on the particle size of the coated nanoparticles. It was recognized that the size of the coated nanoparticles mainly depend on the concentration of OTS (C OTS) measured with respect to the concentration of the iron oxide particles (C mag.). Below a well-defined threshold value of C OTS /C mag, we did not observe any adsorption of OTS on the surface of iron oxide nanoparticles. The particle size of OTS-coated iron oxide nanoparticles increased rapidly at concentration ratios above the threshold concentration and reached a typical plateau value for long periods of time.  相似文献   

15.
A millimetric coaxial flow device operating under laminar flow has been designed to study the synthesis of iron oxide nanoparticles in a millichannel where the flow rate of the different reagents has been adjusted all over the experiments so that the magnetic and stable colloidal iron oxide particles with a size less than 7 nm have been prepared continuously.  相似文献   

16.
A simple gravitational field-flow fractionation (GrFFF) system was used for size separation of micron sized silica particles coated with hydrous iron oxide (geothite). The amount of iron on the particles was monitored either on-line by reverse-flow injection analysis (r-FIA) with chemiluminescence detection using luminol or off-line by electrothermal atomic absorption spectrophotometry (ETAAS). The combination of GrFFF with reverse FIA or with ETAAS has been demonstrated to be a cost-effective tool for size based iron speciation of particles.  相似文献   

17.
It was tried to control the structure and particle size of iron oxide supported on a carrier by regulating the hydrolytic polymerization of aquo iron complexes with organic polydentate ligands. The iron oxide/carrier composites were prepared by calcining carrier oxides impregnated with organic ligands and Fe(NO3)3·9H2O. When ligands were diacetone alcohol and ethanol, the structure of the iron oxide was exclusively corundum. But, with ligands such as ethylene glycol, citric acid and galacturonic acid, the structure of the iron oxide changed from corundum to spinel as the amount of ligands used increased. With both series of ring and straight chain saccharides, size of the iron oxide particles changed depending on saccharides used. It was thus concluded that the structure and particle size of iron oxide supported on a carrier can be regulated by using organic polydentate ligands.  相似文献   

18.
Visualization study on sedimentation of micron iron oxide particles   总被引:2,自引:0,他引:2  
In this paper, a novel technique combined light-electronic microscopy and computer imaging trace was used for visualization of the sedimentation of micron iron oxide particles in a customized micro-reactor. Micron iron oxide particles were recovered from the cinder of sulfuric acid production by sedimentation separating and hydraulic rating. Effects of particle size, shape and surface roughness on the sedimentation velocity were investigated. For irregular-shape particles, the sedimentation velocity and the geometric parameters of the particles were measured by the imaging trace technique. A correction coefficient (c) was used to modify the Stokes equation. In this study, the relationship between the correction coefficient and the equivalent diameter (d(p)) was found to be linear: c=0.6272-0.0298d(p), for iron oxide particles with equivalent diameter 4-22 microm.  相似文献   

19.
Superparamagnetic iron oxide particles with average size less than 20 nm were prepared by chemical co‐precipitation method in the air atmosphere. After that, polydimethyldiallyl ammonium chloride (PDDA) was used for wrapping iron oxide particles to obtain the core/shell nanocomposites. The parameters influencing properties of iron oxide particles and iron oxide/PDDA nanocomposites were investigated and optimized. The prepared iron oxide and nanocomposites were characterized by X‐ray diffraction (XRD) measurement, transmission electron microscopy (TEM), particle size and Zeta potential analyzer, Fourier transform infrared (FTIR) spectroscopy, and vibrating sample magnetometry (VSM), respectively. It was found that the iron oxide particles are cubic inverse spinel Fe3O4 with spherical shape. Superparamagnetic behavior of Fe3O4 with 73.114 emu/g is produced with NH4OH as precipitator, and decreased to 58.583 emu/g for Fe3O4/PDDA nanocomposites. The Zeta potential of nanocomposites is positive value. The results showed that Fe3O4/PDDA nanocomposites have excellent future using as a carrier for bonding with some negative charged particles. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
Iron and titanium oxide nanoparticles have been synthesized in parallel mesopores of alumina by a novel organometallic "chimie douce" approach that uses bis(toluene)iron(0) (1) and bis(toluene)titanium(0) (2) as precursors. These complexes are molecular sources of iron and titanium in a zerovalent atomic state. In the case of 1, core shell iron/iron oxide particles with a strong magnetic coupling between both components, as revealed by magnetic measurements, are formed. M?ssbauer data reveal superparamagnetic particle behavior with a distinct particle size distribution that confirms the magnetic measurements. The dependence of the M?ssbauer spectra on temperature and particle size is explained by the influence of superparamagnetic relaxation effects. The coexistence of a paramagnetic doublet and a magnetically split component in the spectra is further explained by a distribution in particle size. From M?ssbauer parameters the oxide phase can be identified as low-crystallinity ferrihydrite oxide. In agreement with quantum size effects observed in UV-visible studies, TEM measurements determine the size of the particles in the range 5-8 nm. The particles are mainly arranged alongside the pore walls of the alumina template. TiO2 nanoparticles are formed by depositing 2 in mesoporous alumina template. This produces metallic Ti, which is subsequently oxidized to TiO2 (anatase) within the alumina pores. UV-visible studies show a strong quantum confinement effect for these particles. From UV-visible investigations the particle size is determined to be around 2 nm. XPS analysis of the iron- and titania- embedded nanoparticles reveal the presence of Fe2O3 and TiO2 according to experimental binding energies and the experimental line shapes. Ti4+ and Fe3+ are the only oxidation states of the particles which can be determined by this technique. Hydrogen reduction of the iron/iron-oxide nanoparticles at 500 degrees C under flowing H2/N2 produces a catalyst, which is active towards formation of carbon nanotubes by a CVD process. Depending on the reaction conditions, the formation of smaller carbon nanotubes inside the interior of larger carbon nanotubes within the alumina pores can be achieved. This behavior can be understood by means of selectively turning on and off the iron catalyst by adjusting the flow rate of the gaseous carbon precursor in the CVD process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号