首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CdS quantum dot (Qd)-sensitized TiO2 nanotube array photoelectrode is synthesised via a two-step method on tin-doped In2O3-coated (ITO) glass substrate. TiO2 nanotube arrays are prepared in the ethylene glycol electrolyte solution by anodizing titanium films which are deposited on ITO glass substrate by radio frequency sputtering. Then, the CdS Qds are deposited on the nanotubes by successive ionic layer adsorption and reaction technique. The resulting nanotube arrays are characterized by scanning electron microscopy, X-ray diffraction (XRD) and UV–visible absorption spectroscopy. The length of the obtained nanotubes reaches 1.60 μm and their inner diameter and wall thickness are around 90 and 20 nm, respectively. The XRD results show that the as-prepared TiO2 nanotubes array is amorphous, which are converted to anatase TiO2 after annealed at 450 °C for 2 h. The CdS Qds deposited on the TiO2 nanotubes shift the absorption edge of TiO2 from 388 to 494 nm. The results show that the CdS-sensitized TiO2 nanotubes array film can be used as the photoelectrode for solar cells.  相似文献   

2.
The TiO2 nanotube arrays (TiO2 NTAs) prepared by re-oxidation were chosen as basement. The NTAs prepared through re-oxidation show smoother surface and more uniform tube mouth on large scale compared with the first as-grown one. We use successive ionic layer adsorption and reaction method to deposit quantum dots (ZnS and CdS) onto the sample successively. The findings reveal that two kinds of quantum dots (~10 nm) distribute regularly and the nanotube mouth is open. From the UV–Vis absorption spectrum of samples, the red shift occurs after the sedimentation of the two quantum dots, which proves that the double modification can expand the absorption to 650 nm. Among all specimens, the sample produced by co-deposition has the highest speed of catalytic efficiency of 90.7% compared with bare TiO2 NTAs (52.9%) and just CdS QDs sensitized sample (65.8%). In the test of photocatalysis durability, the decay percentages of CdS/TiO2 NTAs and ZnS/CdS/TiO2 NTAs were 35.8 and 48.4%, respectively, which means that the ZnS passivation layer plays a crucial role in enhancing photocatalytic activities.  相似文献   

3.
Chennan Cai  Fengxia Sun  Yanhui Xu 《Ionics》2018,24(8):2227-2232
It is believed that, as the micropower, lithium ion microbatteries will come into use in implantable medical devices, such as heart pacemaker and neurostimulator. A simple electrochemical synthesis method has been used to prepare TiO2 nanotube array that is expected to be used as the microelectrode in Li-ion microbatteries. The SEM measurements showed that the diameter of the nanotube is in a range of 0.10~0.13 μm; the thickness of the tube wall is about 20~40 nm, and the length of the tube is evaluated to be about 1.47 μm. The charging-discharging measurements have showed us its ultra-long cycle life, i.e., about 6000 cycles; at same time, the discharge capacity of more than 15 μAh/cm2/μm has been remained. It is believed that the nanotube array is a promising candidate for microbattery electrode.  相似文献   

4.
The thin-film photocatalysts TiO2/MoO3 and TiO2/MoO3:V2O5 obtained by a combination of sol–gel and sintering techniques were studied using the photooxidation of probing dyes, EPR spectroscopy, X-ray diffraction analysis, and electron microscopy. It was shown that due to charge accumulation caused by UV irradiation, these photocatalysts retain their oxidative activity and ability for self-sterilization in the dark for a long time after irradiation was terminated (up to 5 h for TiO2/MoO3:V2O5).  相似文献   

5.
6.
Binder-free combination of highly conductive Cu bridges with amorphous TiO2 nanotube arrays for lithium ion battery anode were designed and achieved via one-step facile electrodeposition. The obtained composite Cu/TiO2 nanotubes electrode was studied in terms of XRD, SEM, EDX, galvanostatic charge/discharge, cycle stability, rate performance, and AC impedance. As expected, the composite electrode delivered higher discharge capacity, rate performance, and cycle stability than the bare one, possibly due to improved electrical conductivity and the synergy effect between conductive Cu bridges and amorphous TiO2 nanotube arrays.  相似文献   

7.
Visible light Bi2O3/TiO2 nanocomposites are successfully prepared with different dosages of Bi2O3 by hydrothermal process. All the as-prepared samples are characterized by X-ray diffraction (XRD), scanning and transmission electron microscopes (SEM and TEM), Brunauer-Emmett-Teller analysis (BET), N2 adsorption-desorption measurement, and UV-Vis diffuse reflectance spectra (DRS). XRD and Raman spectra reveal the anatase phase of both TiO2 and Bi2O3/TiO2 nanocomposites. X-ray diffraction patterns demonstrate that the bismuth ions did not enter into the lattice of TiO2, and Bi2O3 is extremely dispersive on the surface of TiO2 nanoparticles. The incorporation of Bi2O3 in TiO2 leads to the spectral response of TiO2 in the visible light region and efficient separation of charge carriers. The enhanced visible light activity is tested by the photocatalytic degradation of methyl orange under light illumination, and the performance of Bi2O3/TiO2 nanocomposites are superior than that of pure TiO2 which is ascribed to the efficient charge separation and transfer across the Bi2O3/TiO2 junction. Bi2O3/TiO2 nanocomposite (20 mg) loaded with 0.25 of Bi2O3 dispersed in 50 ml of 5 ppm methyl orange solution exhibited the highest photocatalytic activity of 98.86% within 240 min of irradiation, which is attributed to the low band gap, high surface area, and the strong interaction between Bi2O3 and TiO2.  相似文献   

8.
Performance of dye-sensitized solar cells (DSSCs) based on TiO2 nanotubes (NTs) filled with TiO2 nanoparticles (NPs) was studied as a function of NT height (h). The NT height was varied in the range of 1.5–7.0 μm, while the NT diameter was kept constant at ~80 nm. The studies showed that DSSC efficiency, current density, and fill factor linearly increased with h and ranged in 1.76–6.5%, 3.62–13.2 mA/cm2, and 0.66–0.76, respectively, within the h range studied. The electrochemical impedance spectroscopy was also performed to study DSSC electron transport properties. Based on both photovoltaic and electrochemical impedance spectroscopy data, the results were explained as being due to the increased dye loading that led to higher light-harvesting efficiency.  相似文献   

9.
Two sets of samples of SnO2/In2O3/TiO2 system have been fabricated with different concentrations of component materials. In the first set TiO2 with rutile structure was used, while in the second set it has the structure of anatase. Thin films (up to 50 nm) of obtained mixtures were deposited. Their sensitivity and selectivity with respect to methane (CH4) were studied. Nanostructure on the basis of 70%SnO2 — 10%In2O3 — 20%TiO2(anatase) exhibits sufficient sensitivity to methane.  相似文献   

10.
Photogreying, the change in brightness on UV irradiation in the absence of oxygen, of TiO2 nanoparticulate dispersions is shown to depend on the nature of the liquid, consistent with a surface reaction. Measurements on a series of TiO2 particles (mainly 75×10 nm) dispersed in, e.g., alkyl benzoate correlate well with those on the same TiO2’s dispersed in a second liquid (e.g. propan-2-ol). Photogreying in propan-2-ol is paralleled by photocatalytic-oxidation activity, indicating a common origin – UV-generation of charge carriers. Further, photogreying parallels Ti3+ formation. Hence, although appearance and the visible spectra of photogreyed particles both differ from those of Ti3+ in ≤10 nm colloidal TiO2, we suggest that photogreying is caused by capture of UV excited electrons to form Ti3+. Surface treatment reduces photogreying, and we speculate that differences between uncoated samples reflect differences in the number of potentially reducible Ti’s.  相似文献   

11.
12.
M RIAZIAN  A BAHARI 《Pramana》2012,78(2):319-331
TiO2 Nano rods can be used as dye-sensitized solar cells, various sensors and photocatalysts. These nanorods are synthesized by a hydrothermal corrosion process in NaOH solution at 200°C using TiO2 powder as the source material. In the present work, the synthesis of TiO2 nanorods in anatase, rutile and Ti7O13 phases and synthesis of TiO2 nanorods by incorporating SiO2 dopant, using the sol–gel method and alkaline corrosion are reported. The morphologies and crystal structures of the TiO2 nanorods are characterized using field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD) study. The obtained results show not only an aggregation structure at high calcination temperatures with spherical particles but also Ti–O–Si bonds having four-fold coordination with oxygen in SiO4 − .  相似文献   

13.
Electronic excitation of materials is of fundamental and technological importance and interest in terms of photoinduced phase transition, photovoltaics, and photocatalysis. In the present study, photoexcitation of Fe2 O 3 epitaxially grown on rutile TiO2(100) was investigated with conversion electron Mössbauer spectroscopy (CEMS) under dominantly visible-light irradiation. 57Fe was deposited on the substrate at a substrate temperature of 973 K, and the resulting film was characterized by RHEED and XPS. After deposition of Fe on TiO2(100), it was found that Fe was oxidized to Fe 3+, and the structure was analyzed to be the rhombohedral phase of Fe2 O 3. While the CEMS spectrum without light irradiation showed a quadrupole splitting of 0.80 mm/s with an isomer shift of +0.25 mm/s, an additional component with a quadrupole splitting of 0.85 and an isomer shift of +0.67 mm/s was observed under light irradiation. The latter component corresponds to a reduced state of Fe at the octahedral site surrounded by oxygen atoms. The lifetime of this photoexcited state is discussed.  相似文献   

14.
15.
16.
Hierarchical structured ZnFe2O4@reduced graphite oxide@TiO2 (ZnFe2O4@RGO@TiO2) nanocomposite was prepared by an electrostatic layer-by-layer route, which played a synthetic effect of Fenton oxidation of ZnFe2O4 and photocatalytic oxidation of TiO2 to degrade fulvic acid (FA) solution under visible-light irradiation. In this method, RGO, as the middle layer, can effectively promote the photo-induced electron flow between the ZnFe2O4 and TiO2 and further improve the efficiency of the photo-Fenton oxidation. The influencing factors on photo-Fenton oxidation, including solution pH, catalyst, and H2O2 dosage, have also been investigated. The results illustrated that the ternary composite presented the enhanced catalytic performance. Under visible light irradiation, the degradation efficiency of the sample on the FA solution can reach 95.4% within 3 h. In addition, the catalyst exhibited superior stability and reusability, and its degradation efficiency was still up to 90% after 5 cycles. Therefore, the composite will be a kind of efficient photocatalyst and had a promising application for visible-light driven destruction of organic pollutants.  相似文献   

17.
Non-thermal electrical discharges, such as corona discharge are apart of the source of ozone, charged, and excited species and acoustic noise also the source of electromagnetic radiation of different wavelengths. The important component of this radiation from the standpoint of photocatalyst activation is the ultraviolet radiation. We studied the role of UV radiation on corona discharge ozone production by placing the titanium dioxide photocatalyst into the discharge region. We used hollow needle to mesh DC corona discharge at atmospheric pressure with TiO2 globules on the mesh. The discharge was enhanced by the flow of air through the needle. We found that for the needle biased negatively addition of TiO2 photocatalyst on the mesh electrode drastically increases discharge ozone production as well as the ozone production yield. These quantities are also influenced by the mass of the used photocatalyst and its distribution in the discharge chamber.  相似文献   

18.
Nanocrystalline Li2TiO3 was successfully synthesized using solid-state reaction method. The microstructural and electrochemical properties of the prepared material are systematically characterized. The X-ray diffraction pattern of the prepared material exhibits predominant (002) orientation related to the monoclinic structure with C2/c space group. HRTEM images and SAED analysis reveal the well-developed nanostructured particles with average size of ~40 nm. The electrochemical properties of the prepared sample are carried out using cyclic voltammetry (CV) and chronopotentiometry (CP) using Pt//Li2TiO3 cell in 1 mol L?1 Li2SO4 aqueous electrolyte. The Li2TiO3 electrode exhibits a specific discharge capacity of 122 mAh g?1; it can be used as anode in Li battery within the potential window 0.0–1.0 V, while investigated as a supercapacitor electrode, it delivers a specific capacitance of 317 F g?1 at a current density of 1 mA g?1 within the potential range ?0.4 to +0.4 V. The demonstration of both anodic and supercapacitor behavior concludes that the nanocrystalline Li2TiO3 is a suitable electrode material for supercapattery application.  相似文献   

19.
Structural properties of amorphous TiO2 spherical nanoparticles have been studied in models with different sizes of 2 nm, 3 nm, 4 nm and 5 nm under non-periodic boundary conditions. We use the pairwise interatomic potentials proposed by Matsui and Akaogi. Models have been obtained by cooling from the melt via molecular dynamics (MD) simulation. Structural properties of an amorphous nanoparticle obtained at 350 K have been analyzed in detail through the partial radial distribution functions (PRDFs), coordination number distributions, bond-angle distributions and interatomic distances. Moreover, we show the radial density profile in a nanoparticle. Calculations show that size effects on structure of a model are significant and that if the size is larger than 3 nm, amorphous TiO2 nanoparticles have a distorted octahedral network structure with the mean coordination number ZTi-O ≈6.0 and ZO-Ti ≈3.0 like those observed in the bulk. Surface structure and surface energy of nanoparticles have been obtained and presented.  相似文献   

20.
Sulfonated poly(phenylene oxide) (SPPO) film was electrodeposited on Ti3+-doped TiO2 nanotube arrays (Ti3+/TiO2NT) electrode via the electropolymerization of sulfonated phenol. The as-synthesized SPPO/Ti3+/TiO2NT membrane/electrode was investigated in terms of SEM, FESEM, EDX, FTIR, XPS, galvanostatic charge/discharge, and cycle voltammetry (CV). As expected, the porous SPPO film did form on the surface of Ti3+/TiO2NT electrode; furthermore, the resultant SPPO/Ti3+/TiO2NT membrane/electrode delivered higher electrochemical performances than PPO/Ti3+/TiO2NT, mainly attributed to the contributions of the ionic conductivity induced by –SO3H groups within SPPO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号