首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A new analytical screening technique for the determination of methylmercury and inorganic mercury in hair samples by HPLC-PCO-CVAAS has been developed. It is based on the extraction of mercury compounds by a buffered sodium pyrrolidinedithiocarbamate solution, separation by reversed-phase HPLC, post column oxidation by UV-irradiation, reduction with alkaline sodium borohydride, and determination by cold vapour atomic absorption detection. The standard deviation was 7% and recoveries were 90% for both compounds. The limit of detection (S/N = 3) for both compounds was calculated to be about 4 ppb.  相似文献   

2.
A new analytical screening technique for the determination of methylmercury and inorganic mercury in hair samples by HPLC-PCO-CVAAS has been developed. It is based on the extraction of mercury compounds by a buffered sodium pyrrolidinedithiocarbamate solution, separation by reversed-phase HPLC, post column oxidation by UV-irradiation, reduction with alkaline sodium borohydride, and determination by cold vapour atomic absorption detection. The standard deviation was 7% and recoveries were 90% for both compounds. The limit of detection (S/N = 3) for both compounds was calculated to be about 4 ppb.  相似文献   

3.
An on-line time based injection system used in conjunction with cold vapor generation atomic absorption spectrometry and microwave-aided oxidation with potassium persulfate has been developed for the determination of the different mercury species in fish-eggs oil samples. A three-phase surfactant-oil-water emulsion produced an advantageous flow when a peristaltic pump was used to introduce the highly viscous sample into the system. The optimum proportion of the oil-water mixture ratio was 2:3 v/v with a Tween 20 surfactant concentration in the emulsion of 0.008% v/v. Inorganic mercury was determined after reduction with sodium borohydride while total mercury was determined after an oxidation step with persulfate prior to the reduction step to elemental mercury with the same reducing agent. The difference between total and inorganic mercury determined the organomercury content in samples. A linear calibration graph was obtained in the range 0.1-20 micrograms l-1 of Hg2+ by injecting 0.7 ml of samples. The detection limits based on 3 sigma of the blank signals were 0.11 and 0.12 microgram l-1 for total and inorganic mercury, respectively. The relative standard deviation of ten independent measurements were 2.8 and 2.2% for 10 micrograms l-1 and 8.8 and 9.0% for 0.1 microgram l-1 amounts of total and inorganic mercury, respectively. The recoveries of 0.3, 0.6 and 8 micrograms l-1 of inorganic and organic mercury added to fish-eggs oil samples ranged from 93.0 to 94.8% and from 100 to 106%, respectively. Good agreement with those values obtained for total mercury content in real samples by electrothermal atomic absorption spectrometry was also obtained, differences between mean values were < 7%. With the proposed procedure, 22 proteropterous catfish-eggs oil samples from the northwestern coast of Venezuela were measured; while the organic mercury lay in the range 2.0 and 3.3 micrograms l-1, inorganic mercury was not detected.  相似文献   

4.
A new technique has been developed for the determination of methyl-, ethyl-, methoxyethyl-, ethoxyethyl-, phenyl- and inorganic mercury in natural water samples. The mercury compounds have been complexed for the preconcentration on RP C18 columns by sodium pyrrolidinedithiocarbamate (SPDC), sodium diethyldithiocarbamate (SDDC) and hexamethyleneammonium (HMA) — hexamethylenedithiocarbamate (HMDC), separated by HPLC and determined by UV-PCO-CVAAS (ultra violet, post column oxidation, cold vapour atomic absorption spectrometry). The standard deviations are in the range of 6.9 to 11.8%. The recoveries amount to 86%, 78%, 88%, 83%, 79% and 84% for methyl-, ethyl-, methoxyethyl-, ethoxyethyl-, phenyl- and inorganic mercury for the enrichment from 300 ml water samples. The detection limit for methyl mercury is 0.5 ppt. This new on-line preconcentration procedure has been tested with rain, drinking, surface and process water samples.  相似文献   

5.
A dual direct method for the ultratrace determination of thallium in natural waters by differential pulse anodic stripping voltamrnetry (d.p.a.s.v.) is presented. D.p.a.s.v. at the hanging mercury drop electrode and at the mercury film electrode is used in the concentration ranges 0.5–100 μg Tl l-1, and 0.01–10 μg Tl l-1, respectively. Quantification is aided by the technique of standard additions. The response of the method is optimized for typical natural surface water matrices. An intercomparison of thalium determinations performed by the two anodic stripping methods and electrothermal-atomization atomic absorption spectrometry on normal and thallium-spiked surface water samples demonstrates equivalent accuracy within the range where atomic absorption is applicable. The method appears free from serious interferences.  相似文献   

6.
采用微波炉分解和湿法分解进行生物样品的预处理,结合高灵敏的金汞捕集冷原子吸收法测定了生物样品中的痕量汞。对采用不同分解方法获得的试样进行了空白值、精密度、加标回收,准确度及检出限等性能方面的试验和比较,方法成功地用于生物样品中痕量汞的测定。  相似文献   

7.
Direct solid sampling Zeeman atomic absorption spectrometric methods were developed and applied to the determination of mercury, cadmium, manganese, lead and tin in seafood. All elements but mercury were measured by a third generation Zeeman atomic absorption spectrometry combined with an automatic solid sampler. In 3-field- and dynamic mode the calibrations concentration range was substantially extended and high amounts of analyte were detectable without laborious dilution of solid samples. The measurements were based on calibrations using certified reference materials of organic matrices. In case solid certified reference materials were not available calibration by aqueous standard solutions was proved to be an alternative. No matrix effects were observed under the optimized conditions. Results obtained were in good agreement with the certified values. Solid sampling Zeeman atomic absorption spectrometry proved to be a reliable, rapid and low-cost method for the control of trace elements in seafood.  相似文献   

8.
Several preservatives, containers, etc. have been suggested in relation to the preservation of mercury samples. This paper reports a comparison of sample containers and of preservatives for synthetic and natural low-level (sub-p.p.b.) mercury samples. It is shown that 1% H2SO4+ 0.05% K2Cr2O7 is most advantageous with respect to accuracy, precision and practical aspects such as low detection limits and adaptability to the automated cold-vapor atomic absorption technique. Glass is the best container, and is best washed with concentrated nitric acid or chromic acid. Data from a national interiaboratory quality control study on the determination of mercury show that this preservative is satisfactory for the long-term storage of sub-p.p.b. mercury solutions. The presence of mercury as CH3Hg+3 improves preservation efficiency. The method of total errors is used in comparing the methods.  相似文献   

9.
A simple and rapid wet-digestion procedure is described for the determination of total mercury in botanical samples by cold vapour atomic absorption spectrometry. The method is based on the oxidising properties of potassium dichromate in dilute sulphuric acid and was tested on two National Institute of Standards and Technology Standard Reference Materials. The mass of the samples taken for analysis was about 0.5 g in all instances, corresponding to an amount of mercury of the order of 0.075-0.040 micrograms depending on the material. The results were compared with those obtained using the Association of Official Analytical Chemists official digestion technique, which involves the use of nitric and sulphuric acids, and a second technique based on the action of nitric and perchloric acids. The proposed method provided better accuracy and showed good precision. Its ability to achieve the decomposition of two organomercurials for full mercury recovery was verified.  相似文献   

10.
A technique for estimating nanogram quantities of mercury in sediment samples is described. Samples are heated at 870°C in an oxygen atmosphere, and the released mercury is collected on a gold-coated glass bead trap. The trap is then heated to 500°C in a helium stream; mercury is swept through a d.c. discharge cell and measured by emission spectrometry. Recoveries of mercury added to sediment samples were quantitative. Comparison of five separate samples by the proposed method and by a conventional cold-vapor atomic absorption technique showed similar results. The proposed method gives linear calibration plots up to 1700 ng Hg; the detection limit is 10 ng Hg, so that the sensitivity is 0.005 ppm for a 2.0-g sample.  相似文献   

11.
A new method was developed for the direct electrothermal atomic absorption determination of mercury in drinking water and urine using double vaporization in a two-step atomizer with a purged vaporizer. In this method, a sample is placed in the vaporizer of a two-step atomizer, dried, and vaporized. The sample vapor is transferred to an unheated atomizer cell with a flow of argon and trapped by the inner surface of cell walls. This procedure can be performed repeatedly to preconcentrate mercury in the atomizer cell. Next, a portion of the sample transferred to the inner surface of the atomizer cell is revaporized and atomized by heating the atomizer cell of the two-step atomizer with a purged vaporizer, and the atomic absorption of mercury is measured. It was found that the degree of mercury transfer and trapping is as high as 100% at sufficiently high temperatures of primary vaporization, regardless of the material of the inner surface of the atomizer cell. The detection limits for mercury were 0.24 or 0.024 µg/L for drinking water at a sample volume of 100 µL using a single sample transfer or the procedure repeated ten times, respectively, and 2.0 µg/L for urine at a sample volume of 20 µL and a single sample transfer. The accuracy of the results was confirmed by the analysis of certified mercury samples and samples with known additives.Translated from Zhurnal Analiticheskoi Khimii, Vol. 60, No. 1, 2005, pp. 45–51.Original Russian Text Copyright © 2005 by Vilpan, Grinshtein, Akatov, Gucer.  相似文献   

12.
A simple cold-tube atomic absorption method with a silver-mercury amalgam trap and potassium permanganate as oxidizing agent is described for the determination of total mercury in tissue homogenates. Results are presented for animals fed inorganic (HgCl2) and organic (CH3HgOH) mercury orally at a level of 1 mg Hg kg?1. Data are presented which compare potassium permanganate oxidation of tissue homogenates with whole tissue analysed by cold-tube atomic absorption after digestion with acid, or by neutron activation. For kidney tissue there is good agreement between all three methods for animals fed inorganic and organic mercury. For liver, however, homogenization produced an average loss of about 50 % of the mercury in rats fed mercury(II) chloride. Factors such as adsorption of mercury on sample container walls, bacterial action on the tissue and inadvertent introduction of reducing agents which could reduce the mercury to its elemental state, are not significant. Despite the loss of mercury in the liver by homogenization, rank ordering of mercury values for potassium permanganate—homogenate versus direct neutron activation analyses was essentially the same.  相似文献   

13.
A procedure using an automated microwave flow digestion technique was developed and validated for the digestion of samples of certifiable color additives before mercury determination by cold vapor atomic absorption spectrometry. Recovery studies were performed by spiking most of the color additives subject to batch certification by the U.S. Food and Drug Administration with inorganic mercury (HgNO3) and with organic mercury (CH3HgCl). Successful recoveries of 72-113% Hg added at the 1 microg/g level were obtained. A method detection limit of 0.2 microg Hg/g was estimated from a Hg-spiked FD&C Yellow No. 6 sample. At the specification level of 1 ppm Hg (1 microg Hg/g), the 95% confidence interval was +/- 0.2 ppm (0.2 microg Hg/g).  相似文献   

14.
The development of an apparatus for the on-line sampling, digestion and quantification of total mercury in surface water is described. Detection and quantification is done by flow injection cold vapor atomic absorption spectroscopy (FI-CVAAS). Three digestion methods were tested, chemical, microwave and UV. The influence of the digestion parameters (digestion method, digestion time, microwave power, concentration of oxidation solution) on the recovery of mercury in water of the river Elbe have been investigated. Mercury can be determined almost quantitatively (recovery rate > 85%) with some digestion procedures described. The best results were reached by UV digestion. The technique is fast, simple to handle and robust. Each complete analysis only take four minutes. The working range is 10 to 1000 ng/L. The measuring arrangement has been applied successfully in a governmental monitoring station at Schnackenburg/Elbe, Germany.  相似文献   

15.
Low recovery rate and inconsistent measurements were found in the determination of mercury by method of cold vapor atomic absorption spectrophotometry using the hydride formation system (Hitachi HFS-2, Hitachi Ltd., Tokyo). To overcome this problem of insufficient reaction time we developed a simple T-joint device attaching to the commercial HFS-2 system for the determination of mercury in various biological tissues and sediment samples. The T-joint device was designed to combine sample and reductant injection which increased the reaction time of the sample allowing a complete formation of mercury vapor and speeding up the analysis process in comparison to the traditional cold vapor atomic absorption spectrometric method. Recoveries of mercury were in the range 95% - 100%. The corrected procedure gave precise and accurate readings with several certified reference materials: NIES No. 2 from the Japan Environment Agency; IAEA-356 from the International Atomic Energy Association, and DOLT-2, DORM-2, TORT-2, PACS-1 and MESS-2 from the National Research Council of Canada. Simple acid digestion methods were developed based on the sample Hg level and the nature of the sample. The sample detection limits were 0.0125 μg g−1 fresh weight and 0.0625 μg g−1 dry weight for biological samples, and as low as 0.0125 μg g−1 dry weight for sediment samples. These analytical protocols we established met the general requirements in environmental research and monitoring of mercury pollution.  相似文献   

16.
In recent years, it has increased the number of works focused on the development of novel nanoparticle-based sensors for mercury detection, mainly motivated by the need of low cost portable devices capable of giving fast and reliable analytical response, thus contributing to the analytical decentralization. Methodologies employing colorimetric, fluorometric, magnetic, and electrochemical output signals allowed reaching detection limits within the pM and nM ranges. Most of these developments proved their suitability in detecting and quantifying mercury (II) ions in synthetic solutions or spiked water samples. However, the state of art in these technologies is still behind the standard methods of mercury quantification, such as cold vapor atomic absorption spectrometry and inductively coupled plasma techniques, in terms of reliability and sensitivity. This is mainly because the response of nanoparticle-based sensors is highly affected by the sample matrix. The developed analytical nanosystems may fail in real samples because of the negative incidence of the ionic strength and the presence of exchangeable ligands. The aim of this review is to critically consider the recently published innovations in this area, and highlight the needs to include more realistic assays in future research in order to make these advances suitable for on-site analysis.  相似文献   

17.
The present paper presents a feasibility study for the evaluation of mercury mobility in sediments by application of the modified BCR three-step sequential extraction procedure (BCR-SEP). The aim of the study was to evaluate the effect of acidification, reduction and oxidation processes on mercury mobility from sediments, once the SEP was validated with other trace metals.As extractable mercury amounts were mostly found below detection limits of the advanced mercury analyser (AMA-254) used for measuring the extracts (L.D.<0.5 ng), the use of a solid sampling atomic absorption spectrometer with a specially designed furnace for Hg atomisation was found to be an optimal technique to quantify Hg in the solid residues coming from the SEP.With this approach, mercury was found to be hardly mobile and only for one of the moderately polluted sediments (BCR CRM 320), extractable mercury (exchangeable fraction, BCR procedure step 1) has been found. An oxidation step with H(2)O(2) was required to obtain extractability up to 64% of the total content in a highly polluted lagoon sediment.  相似文献   

18.
A needle trap (NT) technique for simultaneous sampling and analysis of vapor and particle mercury in ambient air using gold wire filled in a syringe needle has been developed. This NT technique relies on gold amalgamation rather than adsorption/absorption to traditional solid-phase microextraction. Hg trapped by Au-amalgamation NT is thermally desorbed in a hot injection port of a gas chromatograph; desorbed Hg is then determined by the coupled mass spectrometer. This simultaneous sampling and analysis technique were optimized, tested, and used for the collection and accurate determination of elemental Hg in ambient air. Linear calibration curves were obtained for Hg sampling by NT when mass spectrometry (MS) was used for detection; they spanned over 4 orders of magnitude. MS offered excellent sensitivity and selectivity. Selected ion monitor (SIM) mode was used for the linear calibration curves. The selected quantitation ion was m/z 202, since m/z 202 was the strongest isotope of mercury mass spectrum. The method was verified with HgCl(2) spiked solution samples. An excellent agreement was found between the results obtained for the Hg-saturated air samples and HgCl(2) spiked solution samples. The use of the Au-amalgamation gas-sampling needle trap method, for the measurement of Hg in air and Hg(2+) water samples, is described herein.  相似文献   

19.
A Direct Mercury Analyzer (DMA) based on sample combustion, concentration of mercury by amalgamation with gold, and cold vapor atomic absorption spectrometry (CVAAS) was coupled to a mercury-specific cold vapor atomic fluorescence spectrometer (CVAFS). The purpose was to evaluate combustion-AFS, a technique which is not commercially available, for low-level analysis of mercury in environmental and biological samples. The experimental setup allowed for comparison of dual measurements of mercury (AAS followed by AFS) for a single combustion event. The AFS instrument control program was modified to properly time capture of mercury from the DMA, avoiding deleterious combustion products from reaching its gold traps. Calibration was carried out using both aqueous solutions and solid reference materials. The absolute detection limits for mercury were 0.002 ng for AFS and 0.016 ng for AAS. Recoveries for reference materials ranged from 89% to 111%, and the precision was generally found to be <10% relative standard deviation (RSD). The two methods produced similar results for samples of hair, finger nails, coal, soil, leaves and food stuffs. However, for samples with mercury near the AAS detection limit (e.g., filter paper spotted with whole blood and segments of tree rings) the signal was still quantifiable with AFS, demonstrating the lower detection limit and greater sensitivity of AFS. This study shows that combustion-AFS is feasible for the direct analysis of low levels of mercury in solid samples that would otherwise require time-consuming and contamination-prone digestion.  相似文献   

20.
为避免汞消解过程中产生的蒸发损失及前处理过程中产生器具与样品污染,通过配制汞总量为0~2、0~15和25~1 023 ng的三种不同汞浓度系列的标准工作曲线,选取9个土壤样品、3种国家土壤有证标准物质,同一样品分别进行6组平行测定,并抽取3个土壤样品进行3种不同浓度加标回收实验,以对其方法精密度和准确度进行论证,建立了催化裂解-金汞齐富集-冷原子吸收光谱法即直接测汞仪测定土壤样品中汞含量的方法。结果显示,仪器信号值与Hg总量之间均呈良好的线性关系。根据仪器多次测定空白数据结果,按照称样量0.1 g计算,方法检出为0.09 ng/g;平行测定结果相对标准偏差均小于10%,土壤标准物质测定值与参考值均相符,不同浓度的加标回收率范围为69.0%~97.0%。方法可用于批量土壤样品中汞含量的快速测定,精密度和准确度可满足测定要求,且实验过程中无需前处理消解,操作方便、快速高效。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号