首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Refractory metals are primarily characterized by a high melting point combined with a rather poor corrosion resistance under oxidizing atmosphere and therefore are mainly used in high temperature processes under reducing atmosphere or in vacuum. Exposure to an atmosphere of high humidity can lead to oxidation of the material even at room temperature. Different methods of surface pre-treatment have been applied to investigate their influence on the oxidation behavior of high-purity molybdenum. Within the scope of this work molybdenum foils and molybdenum discs consisting of the same base material were investigated. Since lateral surface structure as well as the in-depth distribution of contaminants are expected to play an important role in the oxidation process, both the in-depth distribution of the constituents within the oxide layer and the lateral distribution at the surface level of the oxide have been analyzed. Scanning SIMS has been engaged to analyze the uppermost structures of the oxide layer. In order to achieve maximum detection power and to gain the in-depth information, stigmatic SIMS has been applied to investigate the in-depth distribution of the interesting specimen constituents.  相似文献   

2.
An interlaboratory study involving 32 time‐of‐flight static SIMS instruments from 13 countries has been conducted. In Part I of the analysis of data, we showed that 84% of instruments have excellent repeatabilities of better than 1.9% and that a relative instrument spectral response (RISR) can be used to evaluate variations between different generic types of instrument. Use of the RISR improves comparability between instruments by a factor of 33. Here, in Part II, we study the accuracy of the mass scale calibration in TOF‐SIMS and evaluate instrument compatibility with G‐SIMS. We show that the accuracy of calibration of the mass scale is much poorer than generally expected (?60 ppm for peaks <200 u and ?150 ppm for a large molecular peak at 647 u). This is a major issue for analysts. Elsewhere, we have developed a detailed study of the factors affecting the mass calibration and have developed a generic protocol that improves accuracy by a factor of 5. Here, this framework of understanding is used to interpret the results presented. Furthermore, we show that eight out of the ten participants submitting data for G‐SIMS could use operating conditions that generated G‐SIMS spectra of the PC reference material. This demonstrates that G‐SIMS may be conducted with a wide variety of instrument designs. © Crown Copyright 2007. Reproduced by permission of the Controller of HMSO. Published by John Wiley & Sons, Ltd.  相似文献   

3.
Silicon oxynitride has been used as a shallow gate oxide material for microelectronics and its thickness has been reduced over the years to only a few tens of angstroms due to device size scaling. The nitride distribution and density characteristic in the gate oxide thus becomes imperative for the devices. The shallow depth profiling capability using time‐of‐flight secondary ion mass spectrometry (TOF‐SIMS) has huge potential for the nitrogen characterization of the shallow gate oxide film. In this article, both positive and negative spectra of TOF‐SIMS on silicon oxynitride have been extensively studied and it was found that the silicon nitride clusters SixN? (x = 1–4) are able to represent the nitrogen profiles because their ion yields are high enough, especially for the low‐level nitride doping in the oxide, which is formed by the annealing of nitric oxide on SiO2/Si. The gate oxide thickness measured by the TOF‐SIMS profiling method using 18O or CsO profile calibration was found to correlate very well with transmission electron microscope measurement. The nitrogen concentration in the gate oxide measured using the TOF‐SIMS method was consistent with the results obtained using the dynamic SIMS method, which is currently applied to relatively thicker oxynitride films. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Molten salts have been widely used for the electrochemical preparation of lanthanum and uranium metals at high temperature. In this paper we demonstrate the feasibility of a similar process in dimethylformamide (DMF) and in the mixture g-butyrolactone/tetrahydrofuran (g-BL/THF). The best conditions for the preparation were deduced from preliminary transient electrochemistry experiments and from secondary ions mass spectrometry (SIMS) measurements involving SIMS mappings and SIMS depth profile analyses.  相似文献   

5.
The detection of oxygen in magneto-optical layers is of fundamental importance for the characterization of the stability of RE-TM material. The magnetic properties are directly influenced by oxide formation. Oxygen depth profiles are carried out by using the SIMS technique. A comparison with magnetic measurements showed a clear conformity. We were able to study the oxidation behaviour of various layers at room temperature and at higher values up to 250° C for several hours. It could be shown that aluminum is a successful material for the protection of RE-films against oxidation. The difficulties of translating SIMS counting rates into concentration values were overcome by using EPMA. Specially prepared reference samples were measured by this technique and could then be used as standard samples for SIMS.  相似文献   

6.
Quantitative analyses in secondary ion mass spectrometry (SIMS) become possible only if ionization processes are controlled. The Storing Matter technique has been developed to circumvent this so‐called matrix effect, primarily for inorganic samples, but has also been extended to organic samples. For the latter, it has been applied to polystyrene in order to investigate the extent of damage in the polymer, its fragmentation during the sputter deposition process and the effect of the deposition process on the spectra taken by Time‐of‐Flight SIMS (ToF‐SIMS). In this work, a multi‐technique approach, which employs the Storing Matter technique for deposition and ToF‐SIMS and X‐ray photoelectron spectroscopy for characterization, is used to enhance the control of the deposition process, including the thickness of the deposit, the alteration of the source film and the influence of polymer composition on the Storing Matter process. Poly (methyl methacrylate) (PMMA) is used for this work. More detailed information about the sticking of polymer fragments on the metal collector is obtained by density functional theory calculations. This work allows for the conclusion that a part of the fragments deposited on the collector surface diffuses on the latter, reacts and recombines to form larger fragments. The behaviour observed for PMMA is similar to polystyrene, showing that oxygen has no major influence on the processes occurring during the sputter deposition process. Additionally, we have developed a new methodology using 2D ToF‐SIMS images of the deposit to monitor the deposit thickness and to identify surface contaminations. The latter are not only located at the position of the deposit but all over the collector surface. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
Cluster LMIGs are now regarded as the standard primary ion guns on time‐of‐flight secondary ion mass spectrometers (ToF‐SIMS). The ToF‐SIMS analyst typically selects a bombarding species (cluster size and charge) to be used for material analysis. Using standard data collection protocols where the analyst uses only a single primary bombarding species, only a fraction of the ion‐beam current generated by the LMIG is used. In this work, we demonstrate for the first time that it is possible to perform ToF‐SIMS analysis when all of the primary ion intensity (clusters) are used; we refer to this new data analysis mode as non‐mass‐selected (NMS) analysis. Since each of the bombarding species has a different mass‐to‐charge ratio, they strike the sample at different times, and as a result, each of the bombarding species generates a spectrum. The resulting NMS ToF‐SIMS spectrum contains contributions from each of the bombarding species that are shifted in time. NMS spectra are incredibly complicated and would be difficult, if not impossible, to analyze using univariate methodology. We will demonstrate that automated multivariate statistical analysis (MVSA) tools are capable of rapidly converting the complicated NMS data sets into a handful of chemical components (represented by both spectra and images) that are easier to interpret since each component spectrum represents a unique and simpler chemistry. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
The high sensitivity of Secondary-Ion Mass Spectrometry (SIMS) in determining very low trace-element concentrations (down to few ppb wt) has been used to address the important issue of the Light-Lithophile Element (LLE) signatures of mantle peridotites and their potential utility as tracers of transfer of subducted material into the overlying mantle wedge operated either by slab-related fluids or melts. The effects of such metasomatic agents have been described and interpreted on the basis of geochemical and isotopic characteristics of peridotites. However, direct observation of metasomatic processes occurring in the mantle is limited because the most highly metasomatised peridotites are usually found as xenoliths which do not allow large-scale chemical information. In this context, the Finero phlogopite-peridotite massif (Ivrea-Verbano Zone, western Italian Alps) offers a unique opportunity because it contains hydrous mineral assemblages (amphibole + phlogopite ± apatite) and trace element enrichments, supposed to be related to the pervasive migration of slab-derived melts. In this study we report the results of texture-related SIMS investigations performed on a wide range of trace elements such as Li, B, Large-Ion Lithophile Elements (LILE), Rare Earth Elements (REE), Nb, Zr, Ti on clinopyroxenes from the Finero peridotite. SIMS analyses revealed unusual LLE signatures that highlight the role of crust-derived components and open new perspectives on the timing of metasomatic processes.  相似文献   

9.
Some surface aspects of the thermal and X-ray induced degradation of a cellulose nitrate have been studied by FAB/SIMS.The pristine material gives peaks at 30 and 46 amu, indicative of NO+ and NO2+ originating from the nitrate ester groups. The thermally degraded material indicates these peaks at slightly lower intensities, whereas the X-ray degraded material shows little evidence for their appearance. These data complement recent ESCA data on the same systems.1The conclusion is that electromagnetic degradation is predominantly a surface effect, whereas thermal degradation is a bulk oriented phenomenon. 13C nmr has been used to add further evidence for this last point.  相似文献   

10.
Sb-doped SnO(2) thin films, deposited by atomic layer epitaxy (ALE) for gas sensor applications, have been characterized by secondary ion mass spectrometry (SIMS). Quantification of the depth profile data has been carried out by preparing a series of ion implanted standards. Average concentrations determined by SIMS have been compared with Sb/Sn ratios obtained by X-ray fluorescence (XRF) spectrometry and proton induced X-ray emission (PIXE) spectrometry and have been found to be in good agreement. However, a detection limit of 5x10(18) at cm(-3) could only be obtained because of mass interferences. SIMS data show that the ALE technique can be used to produce a controllable growth and doping of thin films.  相似文献   

11.
The application of scanning electron microscopy (SEM) and secondary ion mass spectrometry (SIMS) for characterization of mixed plutonium and uranium particles from nuclear weapons material is presented. The particles originated from the so-called Thule accident in Greenland in 1968. Morphological properties have been studied by SEM and two groups were identified: a "popcorn" structure and a spongy structure. The same technique, coupled with an energy-dispersive X-ray (EDX) spectrometer, showed a heterogeneous composition of Pu and U in the surface layers of the particles. The SIMS depth profiles revealed a varying isotopic composition indicating a heterogeneous mixture of Pu and U in the original nuclear weapons material itself. The depth distributions agree with synchrotron-radiation-based mu-XRF (X-ray fluorescence microprobe) measurements on the particle (Eriksson, M., Wegryzynek, D., Simon, R., & Chinea-Cano, E., in prep.) when a SIMS relative sensitivity factor for Pu to U of 6 is assumed. Different SIMS identified isotopic ratio groups are presented, and the influence of interferences in the Pu and U mass range are estimated. The study found that the materials are a mixture of highly enriched 235U (235U:238U ratio from 0.96 to 1.4) and so-called weapons grade Pu (240Pu:239Pu ratio from 0.028 to 0.059) and confirms earlier work reported in the literature.  相似文献   

12.
Recently, secondary ion mass spectrometry (SIMS) has been used in the analysis of not only impurities but also matrix elements, thus requiring a wide dynamic range for SIMS analysis. However, SIMS detectors, which are mostly used in pulse counting systems, have difficulties with detector saturation. In this paper, we investigate whether a dead‐time model that was developed for X‐ray measurement is applicable for SIMS analysis. We then compare a new correction method with conventional correction methods for detector saturation in SIMS analysis. We report that the new method can better correct the intensity in regions of higher intensity than that achieved by conventional methods. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
With regard to Secondary Ion Mass Spectroscopy (SIMS) measurement of atmospheric gas elements, a problem occurs that the detected signal includes background components caused by residual gas along with contained components. Relating to this issue, an available method to quantify the contained components by separating the background ones had been established for Dynamic SIMS. Time‐of‐Flight SIMS with sputtering ion gun has also applied for depth profiling as well as Dynamic SIMS. However, few studies have attempted to investigate the secondary ion behavior of the atmospheric gas elements for depth profiling by Time‐of‐flight SIMS, especially for low concentration levels. In this study, experimental examinations of the secondary ions of the atmospheric gas elements, such as oxygen, hydrogen, and carbon in the silicon substrate, has been conducted in various analytical conditions of TOF‐SIMS depth profiling mode. Under the analytical conditions of our study, it has been proved that the background intensity of these elements was correlated to the sputtering rate. For the analysis of Floating Zone Silicon substrate, the oxygen intensity of the background component was proportional to the inverse number of the sputtering rate. Based on these facts, the total detected intensity of the atmospheric gas elements was able to be separated into the contained components and background ones by changing the sputtering rate during TOF‐SIMS measurement. An experimental result has shown that the contained oxygen concentration in the Czochralsk Silicon substrate estimated by the “TOF‐SIMS Raster Change Method” has successfully agreed with the result by the Dynamic SIMS.  相似文献   

14.
The focus of this review is on trace-element quantitation of microstructures in solids. This review is aimed at the nonspecialist who wants to know how secondary ion mass spectrometry (SIMS) quantitation is achieved. Despite 35 years of SIMS research and applications, SIMS quantitation remains a fundamentally empirical enterprise and is based on standards. The most used standards are "bulk standards"-solids with a homogeneous distribution of a trace element-and ion-implanted solids. The SIMS systematics of bulk standards and ion-implanted solids are reviewed.  相似文献   

15.
Carbonate oxygen (O) and carbon (C) isotopes are widely used as proxies for tracing the processes and physicochemical conditions of many geological events and environmental changes in Earth Science. In particular, O and C isotopic variations at micrometer scales revealed by modern microbeam analytical techniques such as SIMS and NanoSIMS are robust archives for reconstructing palaeoenvironment and paleoclimate changes at annual and seasonal resolution or even higher temporal resolution. Widespread application of carbonate O and C isotopic microanalysis in Earth Sciences, however, has been restricted due to limitation of high-quality carbonate reference materials for O and C isotopic microanalysis. We introduce in this paper a new calcite reference material for calcite O and C isotopic microanalysis. This calcite is collected from a drill-core of the Oka carbonatite complex (Quebec, Canada). We demonstrated that the Oka calcite is fairly homogeneous in O and C isotopic compositions at micrometer scales based on homogeneity test by hundreds of SIMS O and C isotopic analyses. Precise determinations by using conventional gas-source IRMS yield the recommended value of δ18OVPDB = −23.12 ± 0.15‰ (1SD) and δ13CVPDB = −5.23 ± 0.06‰ (1SD) for the Oka calcite, which has been certified as the first class of Chinese national certified reference material (GBW04481) for O and C isotopic microanalysis.  相似文献   

16.
In this work the effect in secondary ion mass spectrometry (SIMS) of several frequently used matrix‐assisted laser desorption/ionisation (MALDI) matrices on the secondary ion intensities of low molecular weight (m/z 400–800) organic dyes and a pharmaceutical is tested. Matrix (10?1 M) and analyte (10?2 M) solutions were made in methanol. Mixtures with several concentration ratios were prepared from these solutions and spincoated on Si substrates prior to time‐of‐flight (TOF)‐SIMS analysis. In some cases the presence of the MALDI matrices caused a considerable increase in the positive secondary (protonated) molecular ion signals. Enhancements of a factor of 20 and more were recorded. Generally, of the matrices used, 2,5‐dihydroxybenzoic acid and 2,4,6‐trihydroxyacetophenone brought about the highest intensity increases. It was also shown that matrix‐enhanced (ME‐)SIMS is capable of lowering the detection limits for molecule ions. However, the enhancement effect is strongly influenced by the analyte/matrix combination and its concentration ratio. As a result, finding an optimal analyte/matrix mixture can be a very time‐consuming process. Mostly, the presence of the matrices causes changes in the relative ion intensities in the TOF‐S‐SIMS spectra. Compared to the spectra recorded from samples without matrices, only a few additional peaks, such as signals that originate directly from the applied matrix or adduct ions, are observed in the mass spectra. Sometimes molecule ions and some characteristic fragments at high m/z values, that cannot be recorded without matrix, do appear in the spectrum when a matrix is present. In the negative mode no enhancement effect is observed on applying the studied MALDI matrices. The results obtained from samples treated with MALDI matrices are also compared to SIMS results for the same samples after Ag and Au metallisation (MetA‐SIMS). For three of the four tested compounds Au MetA‐SIMS resulted in higher ion yields than ME‐SIMS. For both techniques possible mechanisms that can account for the enhancement effect are proposed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
Adsorbed isotopic mixtures of 14N2 and 15N2 at low coverages on polycrystalline tungsten have been used as model systems for studying sputtering induced recombination during secondary ion mass spectrometry (SIMS). Earlier studies have shown that N2 is completely dissociated on a W surface at low coverage. Thermal desorption spectroscopy (TDS) has been employed here to confirm this fact; our results show that complete isotopic mixing occurs. Adsorbed nitrogen can be sputtered as both atoms and molecules and sputtering induced recombination of adsorbate atoms increases as primary ion energy increases. Sputtering induced recombination is detected through isotopic mixing in SIMS. The data show that the dominant mechanism for sputtering of dimers (N2) is not direct emission from the surface but rather a sputtering induced recombination mechanism.  相似文献   

18.
Sb-doped SnO2 thin films, deposited by atomic layer epitaxy (ALE) for gas sensor applications, have been characterized by secondary ion mass spectrometry (SIMS). Quantification of the depth profile data has been carried out by preparing a series of ion implanted standards. Average concentrations determined by SIMS have been compared with Sb/Sn ratios obtained by X-ray fluorescence (XRF) spectrometry and proton induced X-ray emission (PIXE) spectrometry and have been found to be in good agreement. However, a detection limit of 5×1018 at cm-3 could only be obtained because of mass interferences. SIMS data show that the ALE technique can be used to produce a controllable growth and doping of thin films.  相似文献   

19.
X-ray photoelectron spectroscopy (XPS), secondary ion mass spectrometry (SIMS), rotating disc electrode-electrochemical impedance spectroscopy (RDE-EIS) and synchrotron radiation-grazing incidence X-ray diffraction (SR-GIXRD) have been used to study the response mechanism of the mercury(II) chalcogenide ion-selective electrode (ISE) in saline media. XPS and SIMS have shown that the chalcogenide surface is poisoned by silver chloride, or a mixture of silver halides, on continuous exposure to synthetic and real seawater. Significantly, the in-situ SR-GIXRD study demonstrated that electrode fouling in synthetic seawater is linked to the formation of poorly crystalline or amorphous silver chloride, and that the low level of free mercury(II) in a calibration buffer (i.e., 10(-14) M) is able to undergo metathesis with silver(II) sulfide in the membrane generating mercury(II) sulfide. Significantly, the results of this detailed surface study have shown that silver chloride fouling of the electrode is ameliorated in real seawater comprising natural organic ligands, and this has been attributed to the peptization of silver chloride by the surfactant-like nature of seawater ligands at pH 8. RDE-EIS aging studies have revealed that the chalcogenide membrane experiences a sluggish charge transfer reaction in seawater, and contrary to a previous report for a static electrode, the seawater matrix does not passivate the RDE. The results of this XPS, SIMS, RDE-EIS and SR-GIXRD study have elucidated the response mechanism of the mercury(II) ISE in saline media.  相似文献   

20.
The design philosophy and implementation of an ultra high vacuum (UHV), PC controlled, automated in situ fracture stage for a surface analysis system is described. ToF‐SIMS spectra are shown to illustrate the improvement in spectral quality obtained from micro‐compact tension (CT) tests of polymer matrix fracture surfaces produced using the fracture stage in UHV compared to those obtained from a sample tested at air. This system is flexible in that by changing the capacity of the load cell it is possible to reduce or increase maximum loads as the specimen type and material demands. The stage has been designed with instrumental flexibility in mind, utilising commercial SEM‐stub type sample mounts, and can thus be used for AES/SAM and XPS investigations, as well as ToF‐SIMS analysis, in the authors' laboratory. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号