首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A tridentate N,O-donor, 1,3-bis(3,5-dimethylpyrazol-1-yl)propan-2-ol (HL), has been employed to synthesize cyano-bridged complexes and six heterometallic complexes with [Cu2L2] or [Cu2L2(H2O)] have been generated by using slow diffusion. With slightly different synthetic conditions, subtle variations in the crystal structures of the complexes occur. [Cu2L2][Fe(CN)5NO]?2CH3CN (1) and [Cu2L2][Fe(CN)5NO]?H2O (2), synthesized in different solvents with the same precursor, exhibit a very similar 1-D zig-zag chain motif in different space groups, P21 and P-1, respectively. Similarly, [Cu2L2(H2O)][Ni(CN)4]·H2O (3) and [Cu2L2][Ni(CN)4]?H2O (4), synthesized with different diffusion methods, feature trinuclear and 1-D zig-zag chain structures, which indicates a solvent effect of water. [Cu2L2(H2O)]2[Cu2L2][W(CN)8]2·8H2O (5) is composed of two [W(CN)8]3? and three [Cu2L2]2+ units. In the octanuclear structure, [W(CN)8]3? and one [Cu2L2]2+ bridge and the other two [Cu2L2]2+ are terminal to stop extending the 1-D structure. [CuL][Ag2.24Cu0.76(CN)4] (6) exhibits a discrete structure, in which the complex anion forms a unique 2-D 63 network and the complex cations are inserted in the space between two adjacent networks. Magnetic properties of 1 and 4 are discussed.  相似文献   

2.
《Polyhedron》2001,20(28):306-3306
Five new complexes of composition [Cu(dpt)Ni(CN)4] (1) (dpt=dipropylenetriamine), [Cu(dien)Ni(CN)4]·2H2O (2) (dien=diethylenetriamine), [Cu(N,N′-dimeen)Ni(CN)4]·H2O (3) (N,N′-dimeen=N,N′-dimethylethylenediamine), [Cu(N,N-dimeen)Ni(CN)4]·H2O (4) (N,N-dimeen=N,N-dimethylethylenediamine) and [Cu(trimeen)Ni(CN)4] (5) (trimeen=N,N,N′-trimethylethylenediamine) have been obtained by the reactions of the mixture of Cu(ClO4)2·6H2O, appropriate amine and K2[Ni(CN)4] in water and have been characterized by IR and UV–Vis spectroscopies and magnetic measurements. The crystal structure of [Cu(dpt)Ni(CN)4] (1) has been determined by single-crystal X-ray analysis. The structure of 1 consists of a one-dimensional polymeric chain ---Cu(dpt)---NC---Ni(CN)2---CN---Cu(dpt)--- in which the Cu(II) and Ni(II) atoms are linked by CN groups. The nickel atom is four coordinate with four cyanide-carbon atoms (two cyano groups are terminal and two cyano groups (in cis fashion) are bridged) in a square-planar arrangement and the copper atom is five coordinate with two cyanide-nitrogen and three dpt-nitrogen atoms, in a distorted square-pyramidal arrangement. The temperature dependence of magnetic susceptibility (2–300 K) was measured for compound 1. The magnetic investigation showed the presence of a very weak antiferromagnetic interaction (J=−0.16 cm−1) between the copper atoms within each chain through the diamagnetic Ni(CN)4 2− ions.  相似文献   

3.
The role of ancillary ligands, namely imidazole (im), pyridine (py), 2,2′-bipyridine (bpy) and 1,10-phenanthroline (phen) in the assembly of copper(II) dipicolinate complexes are presented. Mononuclear complexes are observed in the case of monodentate ligands. The mononuclear complex [Cu(im)3L]·4H2O (1) (L = dipicolinate anion) has a distorted octahedral structure with Z′ = 2, whereas [CuL(py)(H2O)]·2H2O (2) adopts distorted square pyramidal geometry. The bidentate ligands bpy and phen favor the formation of dinuclear complexes. The dinuclear complex [CuL(bpy)(μ-L)Cu(bpy)(H2O)]·9H2O (3) has one carbonyl oxygen atom of a carboxylate group of dipicolinate acting as a bridging ligand to the copper site that is devoid of a coordinated water molecule. The complex has an angle of 83.55° between the plane of L and bpy attached to one copper site, whereas it has an angle of 78.13° between the plane L and bpy attached to the other copper site. A 1,10-phenanthroline containing dinuclear copper(II) dipicolinate complex, [Cu(phen)(H2O)(μ-L)Cu(phen)2][CuL2]·12H2O (4), has been structurally characterized. It has an unusual carboxylate bridge.  相似文献   

4.
Copper(II) complexes 1a and 1b, supported by tridentate ligand bpa [bis(2-pyridylmethyl)amine] and tetradentate ligand tpa [tris(2-pyridylmethyl)amine], respectively, react with cumene hydroperoxide (CmOOH) in the presence of triethylamine in CH(3)CN to provide the corresponding copper(II) cumylperoxo complexes 2a and 2b, the formation of which has been confirmed by resonance Raman and ESI-MS analyses using (18)O-labeled CmOOH. UV-vis and ESR spectra as well as DFT calculations indicate that 2a has a 5-coordinate square-pyramidal structure involving CmOO(-) at an equatorial position and one solvent molecule at an axial position at low temperature (-90 °C), whereas a 4-coordinate square-planar structure that has lost the axial solvent ligand is predominant at higher temperatures (above 0 °C). Complex 2b, on the other hand, has a typical trigonal bipyramidal structure with the tripodal tetradentate tpa ligand, where the cumylperoxo ligand occupies an axial position. Both cumylperoxo copper(II) complexes 2a and 2b are fairly stable at ambient temperature, but decompose at a higher temperature (60 °C) in CH(3)CN. Detailed product analyses and DFT studies indicate that the self-decomposition involves O-O bond homolytic cleavage of the peroxo moiety; concomitant hydrogen-atom abstraction from the solvent is partially involved. In the presence of 1,4-cyclohexadiene (CHD), the cumylperoxo complexes react smoothly at 30 °C to give benzene as one product. Detailed product analyses and DFT studies indicate that reaction with CHD involves concerted O-O bond homolytic cleavage and hydrogen-atom abstraction from the substrate, with the oxygen atom directly bonded to the copper(II) ion (proximal oxygen) involved in the C-H bond activation step.  相似文献   

5.
The synthesis and characterisation of novel bis salen complexes, M(salenH2), N,N-bis-[5(1,1,3,3-tetramethyl- butyl)salicylidene]-1,2-diaminoethane complexes, (M=Ni or Cu), and the corresponding less studied, bis-tetrahydrosalen complexes, M[H2(salenH2)], N,N-bis-[2-hydroxy-5(1,1,3,3-tetramethylbutyl)benzyl]-1,2-diaminoethane complexes, (M=Ni or Cu), with a highly branched substitution pattern at C-5 of the benzene ring is described. The Schiff bases behave as dibasic tetradentate ligands. The tetrahydrosalen complexes show structural properties, chemical and thermal behaviour which is different from those of the corresponding salen complexes. The melting points and decomposition temperatures of these complexes were determined by d.s.c. and t.g.a.  相似文献   

6.
Summary Copper(II) and nickel(II) complexes of triazacycloalkanes (pqr-cy), with p, q, r = 2–6, have been prepared and characterized by means of electronic and i.r. spectroscopy, and by magnetic measurements. With nickel(II) mononuclear octahedral complexes [Ni(pgr-cy)2](CI04)2 are formed, but for copper(II) mononuclear octahedral complexes were obtained only for 222-cy and 223-cy. The other ligands gave copper(II) complexes of the type [Cu(pgr-cy)CI]CIO4, [Cu(pgr-cy)OH]ClO4, Or [Cu(pgr-cy)CI1/2OH1/2]ClO4. The hydroxy complexes have low magnetic moments and binuclear hydroxy bridged structures are proposed.Ligand names: e.g. p = q = r = 2 is 1,4,7-triazacvclononane  相似文献   

7.
Summary Cobalt(II), nickel(II) and copper(II) complexes of 2-thiouracil and its arylazo derivatives were prepared. The elemental analysis suggest a range of 11, 21 and 13 stoichiometries. Electronic spectra and magnetic susceptibility measurements were used to infer the structures and the i.r. spectra of the ligands and their complexes to identify the type of bonding.  相似文献   

8.
Synthesis, spectral and solution studies on 2-ethyl imidazolate-bridged (2-EtIm) homo-binuclear copper(II)-copper(II) and hetero-binuclear copper(II)-zinc(II) homologue are described. Magnetic moment values of homo-binuclear complexes indicate that the imidazolate group can mediate antiferromagnetic interactions. Optical spectra of hetero-binuclear complex at varying pH values suggest that the imidazolate-bridged complex is stable over the pH-range 7.15–10.0.  相似文献   

9.
Dehydration steps of aquacopper(II) complexes with homogeneous and heterogeneous coordination sphere are investigated from the view point of structural changes taking place under their heating to the decomposition temperature and during the dehydration. The role of loosening of intra-and intermolecular hydrogen bonds in the decomposition reaction for the structure changes of the remainder, the structural presumptions of the reactants for lower hydrates formation are discussed. Activation parameters of dehydration were found to be the lower, the smaller are the structure differences between the reactants and products. They do not reflect the bond length central atomvolatile ligand, much more the overall structure differences between the starting and resulting compounds. From all data on crystal and molecular structures of dehydrated compounds is the reaction pathway best indicated by anisotropic temperature parameters of donor atoms corrected for the thermal movement of the central atom: the higher these values in the bond direction are, the lower the values of activation energies of dehydration are.  相似文献   

10.
Copper complexes with aminoalcoholato ligands have attracted much attention recently because of their potential applications in ceramic materials. This review deals with polynuclear copper (II) complexes containing bidentate and triden-tate aminoalcoholato ligands. The focus of this article is on the synthesis, structure, and magnetic properties of polynuclear copper (II) complexes obtained recently by our group. Some relevant work reported previously by other researchers is also included.Dedicated to Professor Jiaxi Lu on the occasion of his 80th birthday.  相似文献   

11.
《Chemical physics》1986,104(2):191-199
In spite of the little attention so far paid to the Jahn-Teller (JT) effect in copper(II) complexes in stereochemistries other than the cubic ones, it is shown that strong JT and pseudo-JT interactions are expected at least in square-pyramidal (C4v symmetry) and trigonal bipyramidal (D3h symmetry) copper(II) coordination compounds. On the basis of the theoretical results obtained, it is suggested that the interpretation of some experimental data reported in the literature should be reconsidered.  相似文献   

12.
Summary The reaction of substituted hydrazides with copper(II) chloride was investigated in the solid state or in solution in order to account for substituent effects. Spectroscopic results and values of the formation constants indicate the occurrence of strong complexes.
Molekulare Komplexe von Hydraziden mit Kupfer(II)
Zusammenfassung Die Reaktionen von substituierten Hydraziden mit Kupfer(II)chlorid wurden im Festzustand und in Lösung untersucht. Die spektroskopischen Ergebnisse und die Werte der Bildungskonstanten zeigen die Koordinierung zu starken Komplexen an.
  相似文献   

13.
Binuclear nickel(II) and copper(II) complexes with four 5-methoxysalicylaldehyde N(3)-substituted thiosemicarbazones and nickel(II) complexes of four 5-nitro-salicylaldehyde N(3)-substituted thiosemicarbazones have been prepared and characterized. I.r., electronic, and e.s.r. spectra of the complexes, as well as i.r., electronic, and 1H- and 13C-n.m.r spectra of the thiosemicarbazones, have been obtained. None of these compounds show significant growth inhibitory activity against the fungi Aspergillus niger and Paecilomyces variotii.  相似文献   

14.
Twelve-, fifteen-, and eighteen-membered diaza-crown-N, N-′dialkanoic acids LH2 and their inner salt copper(II) complexes CuL and dicopper complex [CuL(3). CuCl2. CH3OHn were obtained. The complexes of 15- and 18-membered ligands contain Cu2+ ion inside the ring.  相似文献   

15.
Hydration of the copper(II) bis‐complexes with glycine, serine, lysine, and aspartic acid was studied by DFT and MD simulation methods. The distances between copper(II) and water molecules in the 1st and 2nd coordination shells, the average number of water molecules and their mean residence times in the hydration shells were calculated. Good agreement was observed between the values obtained and those found by DFT and NMR relaxation methods. Influence of the functional groups of the ligands and the cistrans isomerism of the complexes on the structural and dynamical parameters of the hydration shells was displayed and explained. Analysis of the MD trajectories reveals the competition for a copper(II) axial position between water molecules or water molecules and the functional chain groups of the ligands and confirms the suggestion on the pentacoordination of copper(II) in such complexes. MD simulations show that only one axial position of Cu(II) is basically occupied at each time step while in average the coordination number more than 5 is observed. © 2017 Wiley Periodicals, Inc.  相似文献   

16.
Slow evaporation of solutions prepared by adding either Cu(ClO(4))(2).6H(2)O or Zn(ClO(4))(2).6H(2)O to solutions containing appropriate proportions of Me(3)tacn (1,4,7-trimethyl-1,4,7-triazacyclononane) and sodium phenyl phosphate (Na(2)PhOPO(3)) gave dark blue crystals of [Cu(3)(Me(3)tacn)(3)(PhOPO(3))(2)](ClO(4))(2).(1)/(2)H(2)O (1) and colorless crystals of [Zn(2)(Me(3)tacn)(2)(H(2)O)(4)(PhOPO(3))](ClO(4))(2).H(2)O (2), respectively. Blue crystals of [Cu(tacn)(2)](BNPP)(2) (3) formed in an aqueous solution of [Cu(tacn)Cl(2)], bis(p-nitrophenyl phosphate) (BNPP), and HEPES buffer (pH 7.4). Compound 1 crystallizes in the triclinic space group P1 (No. 2) with a = 9.8053(2) A, b = 12.9068(2) A, c = 22.1132(2) A, alpha = 98.636(1) degrees, beta = 99.546(1) degrees, gamma = 101.1733(8) degrees, and Z = 2 and exhibits trinuclear Cu(II) clusters in which square pyramidal metal centers are capped by two phosphate esters located above and below the plane of the metal centers. The trinuclear cluster is asymmetric having Cu...Cu distances of 4.14, 4.55, and 5.04 A. Compound 2 crystallizes in the monoclinic space group P2(1)/c (No. 14) with a = 13.6248(2) A, b = 11.6002(2) A, c = 25.9681(4) A, beta = 102.0072(9) degrees, and Z = 4 and contains a dinuclear Zn(II) complex formed by linking two units of [Zn(Me(3)tacn)(OH(2))(2)](2+) by a single phosphate ester. Compound 3 crystallizes in the monoclinic space group C2/c (No. 15) with a = 24.7105(5) A, b = 12.8627(3) A, c = 14.0079(3) A, beta = 106.600(1) degrees, and Z = 4 and consists of mononuclear [Cu(tacn)(2)](2+) cations whose charge is balanced by the BNPP(-) anions.  相似文献   

17.
Summary Complexes of cobalt(II), nickel(II) and copper(II) with novel bidentate bibenzimidazoles, [M(L-L)Cl2], where L-L are methylenebis(1, 1-benzimidazole), methylenebis(2, 2-benzimidazole) and dimethylenebis(2, 2-benzimidazole) are described and characterized by different physical measurements. The four coordinate complexes have distorted tetrahedral or square coplanar structures. The bridging entity between the two donor groups apparently influences the ligand field strength and the ligands occupy a higher position than that of benzimidazole in the spectrochemical series.  相似文献   

18.
Summary The structure of the copper(II) complex cation with HISH2 [HISH2 = cyclo(L-histidyl-L-histidyl)] was determined from molecular weight data and n.m.r. and c.d. spectra in aqueous solution. Two HISH2 moieties ligate to coppervia two nitrogen atoms of the imidazole rings giving rise to two 13-membered chelate rings in solution, a situation seen previously in the crystal.  相似文献   

19.
Summary Copper(II) salts react with benzenecarbothioamide(BCTA);N,N-dimethylbencenecarbothioamide (DMBCTA) andN,N-diethylbenzenecarbothioamide (DEBCTA) to give complexes with 11, 21, 31 ligand/metal stoichiometric ratios, and a diamagnetic complex [Cu2(DEBCTA)Br4]2 which appears to contains copper(I). These compounds were characterized by elemental analyses, conductivities measurements, i.r., electronic and e.p.r. studies and magnetic measurements.The results suggest tetrahedral geometry for the copper(II) complexes, a dimeric structure for bromide-DMBCTA and chloride and bromide-BCTA derivatives, and a square pyramid geometry for the CuBr2-DEBCTA complex. No information is yet available on the coordination geometry of the copper(I) complex.  相似文献   

20.
Sarma M  Mondal B 《Inorganic chemistry》2011,50(8):3206-3212
Two copper(II) complexes, 1 and 2 with L(1) and L(2) [L(1) = 2- aminomethyl pyridine; L(2) = bis-(2-aminoethyl)amine], respectively, in degassed acetonitrile solvent, on exposure to NO gas, were found to form a thermally unstable [Cu(II)-NO] intermediate which then resulted in the reduction of the copper(II) centers. The formation of the [Cu(II)-NO] intermediate was evidenced by UV-visible, FT-IR, and EPR spectroscopic studies. The reduction of the copper(II) centers by nitric oxide afforded ligand transformation through diazotization at the primary amine coordination site, in both cases. The modified ligands, in each case, were isolated and characterized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号