首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 48 毫秒
1.
Chemically reasonable models of PR3 (R = Me, Et, iPr, and tBu) were constructed to apply the post Hartree-Fock method to large transition metal complexes. In this model, R is replaced by the H atom including the frontier orbital consistent quantum capping potential (FOC-QCP) which reproduces the frontier orbital energy of PR3. The steric effect is incorporated by the new procedure named steric repulsion correction (SRC). To examine the performance of this FOC-QCP method with the SRC, the activation barriers and reaction energies of the reductive elimination reactions of C2H6 and H2 from M(R1)2(PR2(3))2 (M = Ni, Pd, or Pt; R1 = Me for R2 = Me, Et, or iPr, or R1 = H for R2 = tBu) were evaluated with the DFT[B3PW91], MP4(SDQ), and CCSD(T) methods. The FOC-QCP method reproduced well the DFT[B3PW91]- and MP4(SDQ)-calculated energy changes of the real complexes with PMe3. For more bulky phosphine, the SRC is important to present correct energy change, in which the MP2 method presents reliable steric repulsion correction like the CCSD(T) method because the systems calculated in the SRC do not include a transition metal element. The monomerization energy of [RhCl(PiPr3)2]2 and the coordination energies of CO, H2, N2, and C2H4 with [RhCl(PiPr3)2]2 were theoretically calculated by the CCSD(T) method combined with the FOC-QCP and the SRC. The CCSD(T)-calculated energies agree well with the experimental ones, indicating the excellent performance of the combination of the FOC-QCP with the SRC. On the other hand, the DFT[B3PW91]-calculated energies of the real complexes considerably deviate from the experimental ones.  相似文献   

2.
Treatment of [Mo(N(2))(PMe(3))(5)] with two equivalents GaCp* (Cp* = η(5)-C(5)(CH(3))(5)) leads to the formation of cis-[Mo(GaCp*)(2)(PMe(3))(4)] (1), while AlCp* did not react with this precursor. In addition, [Ni(GaCp*)(2)(PPh(3))(2)] (2a), [Ni(AlCp*)(2)(PPh(3))(2)] (2b), [Ni(GaCp*)(2)(PCy(3))(2)] (3a), [Ni(GaCp*)(2)(PMe(3))(2)] (3b), [Ni(GaCp*)(3)(PCy(3))] (4) and [Ni(GaCp*)(PMe(3))(3)] (5) have been prepared in high yields by a direct synthesis from [Ni(COD)(2)] and stoichiometric amounts of the ligands PR(3) and ECp* (E = Al, Ga), respectively. All compounds have been fully characterized by (1)H, (13)C, and (31)P NMR spectroscopy, elemental analysis and single crystal X-ray diffraction studies.  相似文献   

3.
Oxidative addition of H2 to Ni(PH3)2 was theoretically studied as a prototype of nickel-catalyzed sigma-bond activation reaction, where CASSCF, CASPT2, CCSD(T), broken symmetry (Bs) MP2 to MP4(SDTQ), and DFT methods were employed. The CASPT2 method yields a reliable potential energy curve (PEC) when the active space consists of 10 electrons and 10 orbitals including five outer 3d' orbitals. The CCSD(T) method presents almost the same PEC as the CASPT2-calculated one, when either the ANO or the cc-pVTZ basis set is used for Ni. Bs-MP4(SDTQ)-calculated PEC is similar to those calculated by the CASPT2/ANO method, while the PEC is not smooth around the transition state. In the DFT calculation, ANO, cc-pVTZ, and triple-zeta quality basis sets (SDB) with Stuttgart-Dresden-Bonn effective core potentials (ECPs) must be used for Ni. The DFT-calculated reaction energy is somewhat smaller than the CASPT2- and CCSD(T)-calculated values, while B3PW91 and mPW1PW91 present moderately better energy changes than BLYP, B1LYP, and B3LYP. Oxidative addition of MeCN to Ni(PH3)2 was investigated by the DFT(B3PW91) and CCSD(T) methods. Almost the same activation barrier was calculated by these methods, when cc-pVTZ was employed for Ni. However, the DFT method moderately underestimates the binding energy of the reactant complex and the reaction energy compared to the CCSD(T) method. This oxidative addition exhibits interesting characteristic features, as follows: The barrier height relative to infinite separation is lower, and the product is more stable than those of the oxidative addition of C2H6. These differences are discussed in detail in terms of Ni-Me and Ni-CN bond energies and the participation of the CN pi* orbital to stabilization interaction in the transition state.  相似文献   

4.
The geometry and bonding nature of Cp(CO)(2)W(CCH)(SiH(2)) (1) and the reaction leading to the formation of 1 from Cp(CO)(2)W(SiH(2)C triple bond CH)(9) were theoretically investigated with DFT, MP2 to MP4(SDTQ), and CCSD(T) methods, where 9 and 1 were adopted as models of the interesting new complexes reported recently, Cp*(CO)(2)W(Si(Ph)(2)C triple bond C(t)Bu) and Cp*(CO)(2)W(C triple bond C(t)Bu)(SiPh(2)), respectively. Our computational results clearly indicate that 1 involves neither a pure silacyclopropenyl group nor pure silylene and acetylide groups and that the silylene group strongly interacts with both the W center and the acetylide group. Frontier orbitals of 1 resemble those observed in the formation of silacyclopropene from silylene and acetylene. The frontier orbitals, as well as the geometry, indicate that the (CCH)(SiH(2)) moiety of 1 can be understood in terms of an interesting intermediate species trapped by the W center in that formation reaction. Complex 1 is easily formed from 9 through Si-C sigma-bond activation with moderate activation barriers of 15.3, 18.8, and 15.8 kcal/mol, which are the DFT-, MP4(SDTQ)-, and CCSD(T)-calculated values, respectively. This reaction takes place without a change of the oxidation state of the W center. Intermediate 9 is easily formed from Cp(CO)(2)W(Me)(H(3)SiC triple bond CH) via Si-H oxidative addition, followed by C-H reductive elimination. The bonding nature of 9 is also very interesting; the nonbonding pi-orbital of the H(2)SiCCH moiety is essentially the same as that of the propargyl group, but the pi-conjugation between Si and C atoms is very weak in the pi-orbital, unlike that in the propargyl group.  相似文献   

5.
The eta(1)-borazine complexes trans-[(Cy(3)P)(2)M(Br)(Br(2)B(3)N(3)H(3))] (Cy = cyclohexyl) were prepared by oxidative addition of a B-Br bond of (BrBNH)(3) to [M(PCy(3))(2)] (M = Pd, Pt). Furthermore the platinum compound was converted into the T-shaped cationic complex trans-[(Cy(3)P)(2)Pt(Br(2)B(3)N(3)H(3))][BAr(f)(4)] [Ar(f) = 3,5-(CF(3))(2)C(6)H(3)] by addition of Na[BAr(f)(4)].  相似文献   

6.
Basicities of the series of complexes CpIr(CO)(PR(3)) [PR(3) = P(p-C(6)H(4)CF(3))(3), P(p-C(6)H(4)F)(3), P(p-C(6)H(4)Cl)(3), PPh(3), P(p-C(6)H(4)CH(3))(3), P(p-C(6)H(4)OCH(3))(3), PPh(2)Me, PPhMe(2), PMe(3), PEt(3), PCy(3)] have been measured by the heat evolved (DeltaH(HM)) when the complex is protonated by CF(3)SO(3)H in 1,2-dichloroethane (DCE) at 25.0 degrees C. The -DeltaH(HM) values range from 28.0 kcal/mol for CpIr(CO)[P(p-C(6)H(4)CF(3))(3)] to 33.2 kcal/mol for CpIr(CO)(PMe(3)) and are directly related to the basicities of the PR(3) ligands in the complexes. For the more basic pentamethylcyclopentadienyl analogs, the -DeltaH(HM) values range from 33.8 kcal/mol for the weakest base CpIr(CO)[P(p-C(6)H(4)CF(3))(3)] to 38.0 kcal/mol for the strongest CpIr(CO)(PMe(3)). The nucleophilicities of the Cp'Ir(CO)(PR(3)) complexes were established from second-order rate constants (k) for their reactions with CH(3)I to give [Cp'Ir(CO)(PR(3))(CH(3))](+)I(-) in CD(2)Cl(2) at 25.0 degrees C. There is an excellent linear correlation between the basicities (DeltaH(HM)) and nucleophilicities (log k) of the CpIr(CO)(PR(3)) complexes. Only the complex CpIr(CO)(PCy(3)) with the bulky tricyclohexylphosphine ligand deviates dramatically from the trend. In general, the pentamethylcyclopentadienyl complexes react 40 times faster than the cyclopentadienyl analogs. However, they do not react as fast as predicted from electronic properties of the complexes, which suggests that the steric size of the Cp ligand reduces the nucleophilicities of the CpIr(CO)(PR(3)) complexes. In addition, heats of protonation (DeltaH(HP)) of tris(2-methoxyphenyl)phosphine, tris(2,6-dimethoxyphenyl)phosphine, and tris(2,4,6-trimethylphenyl)phosphine were measured and used to estimate pK(a) values for these highly basic phosphines.  相似文献   

7.
The compounds [K(Q)][IrH(4)(PR(3))(2)] (Q = 18-crown-6, R = Ph, (i)Pr, Cy; Q = aza-18-crown-6, R = (i)Pr; Q = 1,10-diaza-18-crown-6, R = Ph, (i)Pr, Cy; Q = cryptand-222, R = (i)Pr, Cy) were formed in the reactions of IrH(5)(PR(3))(2) with KH and Q. In solution, the stereochemistry of the salts of [IrH(4)(PR(3))(2)](-) is surprisingly sensitive to the countercation: either trans as the potassium cryptand-222 salts (R = Cy, (i)Pr) or exclusively cis (R = Cy, Ph) as the crown- and azacrown-potassium salts or a mixture of cis and trans (R = (i)Pr). There is IR evidence for protonic-hydridic bonding between the NH of the aza salts and the iridium hydride in solution. In single crystals of [K(18-crown-6)][cis-IrH(4)(PR(3))(2)] (R = Ph, (i)Pr) and [K(aza-18-crown-6)][cis-IrH(4)(P(i)Pr(3))(2)], the potassium bonds to three hydrides on a face of the iridium octahedron according to X-ray diffraction studies. Significantly, [K(1,10-diaza-18-crown-6)][trans-IrH(4)(P(i)Pr(3))(2)] crystallizes in a chain structure held together by protonic-hydridic bonds. In [K(1,10-diaza-18-crown-6)][cis-IrH(4)(PPh(3))(2)], the potassium bonds to two hydrides so that one NH can form an intra-ion-pair protonic-hydridic hydrogen bond while the other forms an inter-ion-pair NH.HIr hydrogen bond to form chains through the lattice. Thus, there is a competition between the potassium and NH groups in forming bonds with the hydrides on iridium. The more basic P(i)R(3) complex has the lower N-H stretch in the IR spectrum because of stronger N[bond]H...HIr hydrogen bonding. The trans complexes have very low Ir-H wavenumbers (1670-1680) due to the trans hydride ligands. The [K(cryptand)](+) salt of [trans-IrH(4)(P(i)Pr(3))(2)](-) reacts with WH(6)(PMe(2)Ph)(3) (pK(alpha)(THF) 42) to give an equilibrium (K(eq) = 1.6) with IrH(5)(P(i)Pr(3))(2) and [WH(5)(PMe(2)Ph)(3)](-) while the same reaction of WH(6)(PMe(2)Ph)(3) with the [K(18-crown-6)](+) salt of [cis-IrH(4)(P(i)Pr(3))(2)](-) has a much larger equilibrium constant (K(eq) = 150) to give IrH(5)(P(i)Pr(3))(2) and [WH(5)(PMe(2)Ph)(3)](-); therefore, the tetrahydride anion displays an unprecedented increase (about 100-fold) in basicity with a change from [K(crypt)](+) to [K(crown)](+) countercation and a change from trans to cis stereochemistry. The acidity of the pentahydrides decrease in THF as IrH(5)(P(i)Pr(3))(2)/[K(crypt)][trans-IrH(4)(P(i)Pr(3))(2)] (pK(alpha)(THF) = 42) > IrH(5)(PCy(3))(2)/[K(crypt)][trans-IrH(4)(PCy(3))(2)] (pK(alpha)(THF) = 43) > IrH(5)(P(i)Pr(3))(2)/[K(crown)][cis-IrH(4)(P(i)Pr(3))(2)] (pK(alpha)(THF) = 44) > IrH(5)(PCy(3))(2)/[K(crown)][cis-IrH(4)(PCy(3))(2)]. The loss of PCy(3) from IrH(5)(PCy(3))(2) can result in mixed ligand complexes and H/D exchange with deuterated solvents. Reductive cleavage of P-Ph bonds is observed in some preparations of the PPh(3) complexes.  相似文献   

8.
The octahedral Ru(II) amine complexes [TpRu(L)(L')(NH(2)R)][OTf] (L = L' = PMe(3), P(OMe)(3) or L = CO and L' = PPh(3); R = H or (t)Bu) have been synthesized and characterized. Deprotonation of the amine complexes [TpRu(L)(L')(NH(3))][OTf] or [TpRu(PMe(3))(2)(NH(2)(t)Bu)][OTf] yields the Ru(II) amido complexes TpRu(L)(L')(NH(2)) and TpRu(PMe(3))(2)(NH(t)Bu). Reactions of the parent amido complexes or TpRu(PMe(3))(2)(NH(t)Bu) with phenylacetylene at room temperature result in immediate deprotonation to form ruthenium-amine/phenylacetylide ion pairs, and heating a benzene solution of the [TpRu(PMe(3))(2)(NH(2)(t)Bu)][PhC(2)] ion pair results in the formation of the Ru(II) phenylacetylide complex TpRu(PMe(3))(2)(C[triple bond]CPh) in >90% yield. The observation that [TpRu(PMe(3))(2)(NH(2)(t)Bu)][PhC(2)] converts to the Ru(II) acetylide with good yield while heating the ion pairs [TpRu(L)(L')(NH(3))][PhC(2)] yields multiple products is attributed to reluctant dissociation of ammonia compared with the (t)butylamine ligand (i.e., different rates for acetylide/amine exchange). These results are consistent with ligand exchange reactions of Ru(II) amine complexes [TpRu(PMe(3))(2)(NH(2)R)][OTf] (R = H or (t)Bu) with acetonitrile. The previously reported phenyl amido complexes TpRuL(2)(NHPh) [L = PMe(3) or P(OMe)(3)] react with 10 equiv of phenylacetylene at elevated temperature to produce Ru(II) acetylide complexes TpRuL(2)(C[triple bond]CPh) in quantitative yields. Kinetic studies indicate that the reaction of TpRu(PMe(3))(2)(NHPh) with phenylacetylene occurs via a pathway that involves TpRu(PMe(3))(2)(OTf) or [TpRu(PMe(3))(2)(NH(2)Ph)][OTf] as catalyst. Reactions of 1,4-cyclohexadiene with the Ru(II) amido complexes TpRu(L)(L')(NH(2)) (L = L' = PMe(3) or L = CO and L' = PPh(3)) or TpRu(PMe(3))(2)(NH(t)Bu) at elevated temperatures result in the formation of benzene and Ru hydride complexes. TpRu(PMe(3))(2)(H), [Tp(PMe(3))(2)Ru[double bond]C[double bond]C(H)Ph][OTf], [Tp(PMe(3))(2)Ru=C(CH(2)Ph)[N(H)Ph]][OTf], and [TpRu(PMe(3))(3)][OTf] have been independently prepared and characterized. Results from solid-state X-ray diffraction studies of the complexes [TpRu(CO)(PPh(3))(NH(3))][OTf], [TpRu(PMe(3))(2)(NH(3))][OTf], and TpRu(CO)(PPh(3))(C[triple bond]CPh) are reported.  相似文献   

9.
The interaction of the ruthenium hydride complex CpRuH(CO)(PCy(3)) (1) with proton donors HOR of different strength was studied in hexane and compared with data in dichloromethane. The formation of dihydrogen-bonded complexes (2) and ion pairs stabilized by hydrogen bonds between the dihydrogen ligand and the anion (3) was observed. Kinetics of the interconversion from 2 to 3 was followed at different (CF(3))(3)COH concentrations between 200 and 240 K. The activation enthalpy and entropy values for proton transfer from the dihydrogen-bonded complex 2 to the (eta(2)-H(2))-complex 3 (DeltaH() = 11.0 +/- 0.5 kcal/mol and DeltaS() = -19 +/- 3 eu) were obtained for the first time. The results of the DFT study of the proton transfer process, taking CF(3)COOH and (CF(3))(3)COH as a proton donors and introducing solvent effects in the calculation with the PCM method, are presented. The role of homoconjugate pairs [ROHOR](-) in the protonation is analyzed by means of the inclusion of an additional ROH molecule in the calculations. The formation of the free cationic complex [CpRu(CO)(PCy(3))(eta(2)-H(2))](+) is driven by the formation of the homoconjugated anionic complex [ROHOR](-). Solvent polarity plays a significant role stabilizing the charged species formed in the process. The theoretical study also accounts for the dihydrogen release and production of CpRu(OR)(CO)(PCy(3)), observed at temperatures above 250 K.  相似文献   

10.
The reaction of [Pt3(mu-CO)3(PCy3)3](1) with one mole-equivalent of iodo-acetonitrile was quantitative at -70 degrees C giving the oxidative addition product [Pt3(mu-CO)3(PCy3)3(I)(CH2CN)](2). Fragmentation of was observed in solution giving [Pt2I(CH2CN)(CO)2(PCy3)2](3) which is the major product at room temperature if the starting cluster/reactant ratio is equal to or less than 1 to 1.5. Dimer 3 decomposes slowly in solution giving [Pt2I2(CO)2(PCy3)2](4a) and succinonitrile. Monomer [PtI(CH2CN)(CO)(PCy3)] was the final product of the reaction when using excess of iodo-acetonitrile. The reactions of with one mole-equivalent of halogens X2 gave the new 44-electron clusters [Pt3X(micro-CO)2(micro-X)(PCy3)3](X = I2(7a) or Br2(7b)) by oxidative addition followed by substitution of CO by X-. Fragmentation of and took place in solution when using one and a half mole-equivalents of X2 giving dimers 4a and [Pt2Br2(CO)2(PCy3)2](4b) as well as [Pt2X2(mu-X)2(CO)2(PCy3)2]. Monomers cis-[PtX2(CO)(PCy3)] were the final products of the reaction of with excess of halogens. Insertion of SnCl2 was observed into the Pt-Pt bond but not into the Pt-X bond, when equimolar amounts of SnCl2 x 2H2O were added to a solution of 4a or its chloro-analogue giving [Pt2X2(micro-SnCl2)(CO)2(PCy3)2]. The Pt(I) dimers have unusually small J(Pt-Pt) values as observed by 195Pt NMR and calculated by DFT. These values showed periodic changes comparing 4a and its analogues with other halides and mixed halide dimers.  相似文献   

11.
Cy(3)PCuMe (1) undergoes reversible ligand redistribution at low temperature in solution to form the tight ion pair [Cu(PCy(3))(2)][CuMe(2)] (3). The structure of 3 was assigned on the basis of (i) the stoichiometry of the 1 = 3 equilibrium, (ii) the observation of a triplet for the PCy(3) C1 (13)C NMR resonance due to virtual coupling to two (31)P nuclei, and (iii) reverse synthesis of 1 by combining separately generated Cu(PCy(3))(2)(+) and CuMe(2)(-) ions. Complex 1 and [Cu(PCy(3))(2)][PF(6)] (5) coordinate additional PCy(3) to form (Cy(3)P)(2)CuMe and [Cu(PCy(3))(3)][PF(6)], respectively, while 3 does not. Complex 1, free PCy(3), and (bipy)(2)FeEt(2) (2) each initiate the polymerization of acrylonitrile. In each case, the polyacrylonitrile contains branches that are characteristic of an anionic polymerization mechanism. The major initiator in acrylonitrile polymerization by 1 is PCy(3), which is liberated from 1. A transient iron hydride complex is proposed to initiate acrylonitrile polymerization by 2.  相似文献   

12.
Structural, spectroscopic properties on the dinuclear [M(2)(dcpm)(2)(CN)(4)] (M = Pt, 1a; Ni, 2a, dcpm = bis(dicyclohexylphosphino)methane) and [M(2)(dmpm)(2)(CN)(4)] (M = Pt, 1b; Ni, 2b, dmpm = bis(dimethylphosphino)methane) and the mononuclear trans-[M(PCy(3))(2)(CN)(2)] (M = Pt, 3; Ni, 4, PCy(3) = tricyclohexylphosphine) and theoretical investigations on the corresponding model compounds are described. X-ray structural analyses reveal Pt.Pt and Ni.Ni distances of 3.0565(4)/3.189(1) A and 2.957(1)/3.209(8) A for 1a/1b and 2a/2b, respectively. The UV-vis absorption bands at 337 nm (epsilon 2.41 x 10(4) dm(3) mol(-)(1) cm(-)(1)) for 1a and 328 nm (epsilon 2.43 x 10(4) dm(3) mol(-)(1) cm(-)(1)) for 1b in CH(2)Cl(2) are assigned to (1)(5d(sigma) --> 6p(sigma)) electronic transitions originating from Pt(II)-Pt(II) interactions. Resonance Raman spectroscopy of 1a, in which all the Raman intensity appears in the Pt-Pt stretch fundamental (93 cm(-)(1)) and overtone bands, verifies this metal-metal interaction. Complexes 1a and 1b exhibit photoluminescence in the solid state and solution. For the dinuclear nickel(II) complexes 2a and 2b, neither spectroscopic data nor theoretical calculation suggests the presence of Ni(II)-Ni(II) interactions. The intense absorption bands at lambda > 320 nm in the UV-vis spectra of 2a and 2b are tentatively assigned to d --> d transitions.  相似文献   

13.
The reaction of (ArN=)MoCl(2)(PMe(3))(3) (Ar = 2,6-diisopropylphenyl) with L-Selectride gives the hydrido-chloride complex (ArN=)Mo(H)(Cl)(PMe(3))(3) (2). Complex 2 was found to catalyze the hydrosilylation of carbonyls and nitriles as well as the dehydrogenative silylation of alcohols and water. Compound 2 does not show any productive reaction with PhSiH(3); however, a slow H/D exchange and formation of (ArN=)Mo(D)(Cl)(PMe(3))(3) (2(D)) was observed upon addition of PhSiD(3). Reactivity of 2 toward organic substrates was studied. Stoichiometric reactions of 2 with benzaldehyde and cyclohexanone start with dissociation of the trans-to-hydride PMe(3) ligand followed by coordination and insertion of carbonyls into the Mo-H bond to form alkoxy derivatives (ArN=)Mo(Cl)(OR)(PMe(2))L(2) (3: R = OCH(2)Ph, L(2) = 2 PMe(3); 5: R = OCH(2)Ph, L(2) = η(2)-PhC(O)H; 6: R = OCy, L(2) = 2 PMe(3)). The latter species reacts with PhSiH(3) to furnish the corresponding silyl ethers and to recover the hydride 2. An analogous mechanism was suggested for the dehydrogenative ethanolysis with PhSiH(3), with the key intermediate being the ethoxy complex (ArN=)Mo(Cl)(OEt)(PMe(3))(3) (7). In the case of hydrosilylation of acetophenone, a D-labeling experiment, i.e., a reaction of 2 with acetophenone and PhSiD(3) in the 1:1:1 ratio, suggests an alternative mechanism that does not involve the intermediacy of an alkoxy complex. In this particular case, the reaction presumably proceeds via Lewis acid catalysis. Similar to the case of benzaldehyde, treatment of 2 with styrene gives trans-(ArN=)Mo(H)(η(2)-CH(2)═CHPh)(PMe(3))(2) (8). Complex 8 slowly decomposes via the release of ethylbenzene, indicating only a slow insertion of styrene ligand into the Mo-H bond of 8.  相似文献   

14.
Zhu G  Parkin G 《Inorganic chemistry》2005,44(26):9637-9639
Mo(PMe(3))(6) and W(PMe(3))(4)(eta(2)-CH(2)PMe(2))H undergo oxidative addition of the O-H bond of RCO(2)H to yield sequentially M(PMe(3))(4)(eta(2)-O(2)CR)H and M(PMe(3))(3)(eta(2)-O(2)CR)(eta(1)-O(2)CR)H(2) (M = Mo and R = Ph, Bu(t); M = W and R = Bu(t)). One of the oxygen donors of the bidentate carboxylate ligand may be displaced by H(2)O to give rare examples of aqua-dihydride complexes, M(PMe(3))(3)(eta(1)-O(2)CR)(2)(OH(2))H(2), in which the coordinated water molecule is hydrogen-bonded to both carboxylate ligands.  相似文献   

15.
The bis(dihydrogen) complex RuH(2)(H(2))(2)(PCy(3))(2) (1) reacts with 2-phenyl-3,4-dimethylphosphaferrocene (L(1)) to give RuH(2)(H(2))(PCy(3))(2)(L(1)) (2). This dihydride-dihydrogen complex has been characterized by X-ray crystallography and variable-temperature (1)H and (31)P NMR spectroscopy. The exchange between the dihydrogen ligand and the two hydrides is characterized by a DeltaG() of 46.2 kJ/mol at 263 K. H/D exchange is readily observed when heating a C(7)D(8) solution of 2 (J(H-D) = 30 Hz). The H(2) ligand in 2 can be displaced by ethylene or carbon monoxide leading to the corresponding ethylene or carbonyl complexes. The reaction of 1 with 2 equiv of 3,4-dimethylphosphaferrocene (L(2)) yields the dihydride complex RuH(2)(PCy(3))(2)(L(2))(2) (5).  相似文献   

16.
The tetrakis(trimethylphosphine) molybdenum nitrosyl hydrido complex trans-Mo(PMe(3))(4)(H)(NO) (2) and the related deuteride complex trans-Mo(PMe(3))(4)(D)(NO) (2a) were prepared from trans-Mo(PMe(3))(4)(Cl)(NO) (1). From (2)H T(1 min) measurements and solid-state (2)H NMR the bond ionicities of 2a could be determined and were found to be 80.0% and 75.3%, respectively, indicating a very polar Mo--D bond. The enhanced hydridicity of 2 is reflected in its very high propensity to undergo hydride transfer reactions. 2 was thus reacted with acetone, acetophenone, and benzophenone to afford the corresponding alkoxide complexes trans-Mo(NO)(PMe(3))(4)(OCHR'R') (R' = R' = Me (3); R' = Me, R' = Ph (4); R' = R' = Ph (5)). The reaction of 2 with CO(2) led to the formation of the formato-O-complex Mo(NO)(OCHO)(PMe(3))(4) (6). The reaction of with HOSO(2)CF(3) produced the anion coordinated complex Mo(NO)(PMe(3))(4)(OSO(2)CF(3)) (7), and the reaction with [H(Et(2)O)(2)][BAr(F)(4)] with an excess of PMe(3) produced the pentakis(trimethylphosphine) coordinated compound [Mo(NO)(PMe(3))(5)][BAr(F)(4)] (8). Imine insertions into the Mo-H bond of 2 were also accomplished. PhCH[double bond, length as m-dash]NPh (N-benzylideneaniline) and C(10)H(7)CH=NPh (N-1-naphthylideneaniline) afforded the amido compounds Mo(NO)(PMe(3))(4)[NR'(CH(2)R')] (R' = R' = Ph (9), R' = Ph, R' = naphthyl (11)). 9 could not be obtained in pure form, however, its structure was assigned by spectroscopic means. At room temperature 11 reacted further to lose one PMe(3) forming 12 (Mo(NO)PMe(3))(3)[N(Ph)CH(2)C(10)H(6))]) with agostic stabilization. In a subsequent step oxidative addition of the agostic naphthyl C-H bond to the molybdenum centre occurred. Then hydrogen migration took place giving the chelate amine complex Mo(NO)(PMe(3))(3)[NH(Ph)(CH(2)C(10)H(6))] (15). The insertion reaction of 2 with C(10)H(7)N=CHPh led to formation of the agostic compound Mo(NO)(PMe(3))(3)[N(CH(2)Ph)(C(10)H(7))] (10). Based on the knowledge of facile formation of agostic compounds the catalytic hydrogenation of C(10)H(7)N=CHPh and PhN=CHC(10)H(7) with 2 (5 mol%) was tested. The best conversion rates were obtained in the presence of an excess of PMe(3), which were 18.4% and 100% for C(10)H(7)N=CHPh and PhN=CHC(10)H(7), respectively.  相似文献   

17.
Treatment of [Pt(PCy(3))(2)] (Cy = cyclohexyl) with BI(3) afforded trans-[(Cy(3)P)(2)Pt(I)(BI(2))] by the oxidative addition of a B-I bond. The title compound represents the first diiodoboryl complex and was fully characterized by NMR spectroscopy and X-ray diffraction analysis. The latter revealed a very short Pt-B distance, thus indicating a pronounced pi contribution to this bond. By the addition of another 1 equiv of BI(3) to trans-[(Cy(3)P)(2)Pt(I)(BI(2))], a new Pt species [(Cy(3)P)(I(2)B)Pt(mu-I)](2) was formed with concomitant buildup of the phosphine borane adduct [Cy(3)P-BI(3)]. The former is obviously obtained by abstraction of PCy(3) from trans-[(Cy(3)P)(2)Pt(I)(BI(2))] and the subsequent dimerization of two remaining fragments. Interestingly, the dimerization is reversible, and the dinuclear compound can be converted to trans-[(Cy(3)P)(2)Pt(I)(BI(2))] upon the addition of PCy(3).  相似文献   

18.
The pathway for the cleavage of an aromatic C-C bond in quinoxaline by a tungsten(II) complex [W(PMe(3))(4)(η(2)-CH(2)PMe(2))H] is explored by performing detailed DFT calculations. The real active complex was found to be [W(PMe(3))(2)(η(2)-CH(2)PMe(2))H] rather than [W(PMe(3))(4)]. The key step in the whole reaction is the reductive elimination of two hydrides that are located originally on quinoxaline (see scheme).  相似文献   

19.
The reaction of the Pt(I)Pt(I)Pt(II) triangulo cluster Pt(3)(micro-PBu(t)()(2))(3)(H)(CO)(2) (1) with TfOH (Tf = CF(3)SO(2)) affords the hydride-bridged cationic derivative [Pt(3)(mu-PBu(t)()(2))(2)(mu-H)(PBu(t)()(2)H)(CO)(2)]OTf (2). With TfOD the reaction gives selectively [Pt(3)(mu-PBu(t)(2))(2)(mu-D)(PBu(t)(2)H)(CO)(2)]OTf (2-D(1)), implying that the proton is transferred to a metal center while a P-H bond is formed by the reductive coupling of one of the bridging phosphides and the terminal hydride ligand of the reagent. The reaction proceeds through the formation of a thermally unstable kinetic intermediate which was characterized at low temperatures, and was suggested to be the CO-hydrogen-bonded (or protonated) [Pt(3)(mu-PBu(t)(2))(3)(H)(CO)(2)].HOTf (3). An ab initio theoretical study predicts a hydrogen-bonded complex or a proton-transfer tight ion pair as a possible candidate for the structure of the kinetic intermediate.  相似文献   

20.
The reactions of W(PMe(3))(4)(η(2)-CH(2)PMe(2))H, W(PMe(3))(5)H(2), W(PMe(3))(4)H(4) and W(PMe(3))(3)H(6) towards thiophenes reveal that molecular tungsten compounds are capable of achieving a variety of transformations that are relevant to hydrodesulfurization. For example, sequential treatment of W(PMe(3))(4)(η(2)-CH(2)PMe(2))H with thiophene and H(2) yields the butanethiolate complex, W(PMe(3))(4)(SBu(n))H(3), which eliminates but-1-ene at 100 °C. Likewise, sequential treatment of W(PMe(3))(4)(η(2)-CH(2)PMe(2))H with benzothiophene and H(2) yields W(PMe(3))(4)(SC(6)H(4)Et)H(3), which releases ethylbenzene at 100 °C. Moreover, W(PMe(3))(4)(η(2)-CH(2)PMe(2))H desulfurizes dibenzothiophene to form a dibenzometallacyclopentadiene complex, [(κ(2)-C(12)H(8))W(PMe(3))](μ-S)(μ-CH(2)PMe(2))(μ-PMe(2))[W(PMe(3))(3)].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号