首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Potentiometric properties of manganese oxides doped with alkali metal ions (Na+, K+, Rb+ and Cs+), which were prepared by heating mixed solutions (starting solution) of each alkali metal and Mn2+ ions, were examined. Electrodes based on mixed phases of Nao44MnO2/Mn2O3 and hollandite KMn8O16/M2O3 found by X-ray powder diffraction (XRD) exhibited Na+- and K+-selective responses with a near-Nernstian slope, respectively, when the molar ratio of alkali metal ion to Mn2+ ion in the starting solution was 0.1. When no alkali metal ions were added in the manganese oxide films, no significant potentiometric response was observed to any alkali metal ions. The selectivity coefficients of these electrodes were = 6.7 × 10–2, = 7.1 × 10–3, < 9 × 10–4 and < 9x 10–4 for the Na0.44MnO2/Mn2O3, and <4 × 10–4 <4x 10–4, =60 × 10–2 ×10–4, < 4 × 10–4, for the KMn8O16/Mn2O3, respectively. Electrodes based on manganese oxides made from mixed solutions of Rb+/Mn2+ and Cs+/Mn2+ also responded to the respective primary ions, that is, Rb+ and Cs+ ions, although XRD patterns for the manganese oxides thus made did not show any peaks except for Mn2O3 (bixbyite); it was concluded in these cases that some amorphous type manganese oxides were formed in the Rb+/Mn2+ and Cs+/Mn2+ systems and they responded to the respective ions. Conditioning of these electrodes in an aerated indifferent electrolyte solution, 0.1M tetramethylammonium nitrate (TMA-NO3), for relatively long time, typically more than 2 hours, was found to be a prerequisite for near-Nernstian response to the respective alkali metal ions. During this electrode conditioning, vacant sites (template) suitable in size for selective uptake of primary ions seemed to be formed by releasing the doped alkali metal ions from the solid phase into the adjacent electrolyte solution accompanying oxidation of the manganese oxide film.  相似文献   

2.
The crystal structures of Mn5O8 and Cd2Mn3O8 are determined from single crystal and high resolution X-ray powder data. Both structures have very similar monoclinic unit cells, space group CC2/m, and are isotypic: Hence, the true formula of Mn5O8 is MnMnO8. The crystal structure consists of pseudohexagonal MnIV sheets (bc) with similar oxygen sheets on either side, giving a distorted octahedral coordination to the MnIV. As every fourth MnIV is missing in these “main layers”, their composition becomes Mn3O8, and chains of coordination octahedra linked by common edges become distinct. Above and below the empty MnIV sites are either MnII or CdII completing the composition MnMnO8 or Cd2Mn3O8 respectively. Examples of similar “double layer” structures are given.  相似文献   

3.
Chemical Transport in the System Mn? O in Consideration of the Oxygen Coexistence Pressure (I) The chemical transport of the coexistent phases Mn2O3? Mn3O4 and Mn3O4? MnO with Cl2, Br2, I2, HCl, HBr, and HI was analysed thermodynamically and experimentally. The mentioned transport agents are able to transport the following phases:
  • 1 Index (o) bedeutet obere, (u) untere Phasengrenze (index (o) – upper phase boundary, (u) – lower phase boundary).
  • .  相似文献   

    4.
    Phase equilibria were established in Ho-Mn-O and Tb-Mn-O systems at 1100°C by varying the oxygen partial pressure from −log(PO2/atm)=0-13.00, and phase diagrams for the corresponding Ln2O3-MnO-MnO2 systems at 1100°C were presented. Stable Ln2O3, MnO, Mn3O4, LnMnO3, and LnMn2O5 phases were found at 1100°C, whereas Ln2Mn2O7, Ln2MnO4, Mn2O3, and MnO2 were not found to be stable. Small nonstoichiometric ranges were found in the LnMnO3 phase, with the composition of LnMnO3 represented as functions of log(PO2/atm), and . Activities of the components in the solid solution were calculated from these equations. The composition of LnMnO3 may range from Ln2O3 rich to Ln2O3 poor, while MnO is slightly nonstoichiometric, being oxygen rich and LnMn2O5 seems to be nonstoichiometric. Lattice constants of LnMnO3 quenched at different oxygen partial pressures and of LnMn2O5 quenched in air were determined. The standard Gibbs energy changes of the reactions appearing in the phase diagrams were also calculated. The relationship between the tolerance factor of LnMnO3 and ΔG0of reaction, (1/2)Ln2O3+MnO+(1/4)O2=LnMnO3, is shown graphically.  相似文献   

    5.
    About an Oxotantalate with Partly Ordered Corundum-Structure: Mn0.6Mg3.4Ta2O9 In the system of mixed crystals of the composition Mn4?xMgxTa2O9 single crystals with x = 3.4 were examined by X-ray methods (space group D–P3 c1; a = 5.2141; c = 14.178 Å; Z = 2). The point positions of the divalent metals are occupied in an ordered manner. Order and disorder are discussed in respect to Mn2Zn2Nb2O9, Mn3ZnNb2O9, and oxotantalates (MM′)4Ta2O9 [M, M′ = Zn, Ni, Mg].  相似文献   

    6.
    Summary The oxidation of MnII by S2O8 2– to MnVII in phosphoric acid medium proceeds via a stable MnIII and MnIV species. The reaction is catalysed by Ag+ and exhibits first order dependence on [S2O8 2–], [Ag+] and, is independent of [MnII]. The [H+] has no significant effect on the reaction. It is observed that the PO4 3– ion stabilises the transient manganese(III) and manganese(IV) species by forming a stable and soluble phosphato-complexes. The activation parameters for the two stages of oxidation, namely MnII MnIV and MnIVMnVII at 25° C are Ea=52 ±4 kJ mole–1, S*=–57±2 JK–1 mole–1 and Ea =56±4 kJ mole–1, S*=–44±2 JK–1 mole–1, respectively. A mechanism consistent with the experimental observations is proposed.Presented at the National Symposium on Reaction Kinetics and Mechanism, Department of Chemistry, University of Jodhpur, Jodhpur, India, Nov. 15–18, 1986.  相似文献   

    7.
    The present study deals with the electrochemical reductive dissolution of Mn3O4, which was added to carbon-paste electroactive electrodes (CPEEs) in acid solutions. It was found that in the experimental conditions the thermodynamically stable form of manganese was . Kinetic features of the electrochemical reductive dissolution of Mn3O4, which was realized under potential cycling conditions (+1.0 V→−0.7 V→+1.0 V), were determined by the electrode polarization direction. It was shown that the cathodic reduction of Mn3O4 was accomplished in three stages. Manganese was dissolved in the supporting solution only at the third stage. The first two stages involved solid-phase reactions. The anodic cycling stage included an active dissolution of Mn3O4 and the lower manganese oxide (MnO) accumulated on the electrode surface during the cathodic reduction.  相似文献   

    8.
    Zhu  Xin-De  Li  Hong-Mei  Song  Fa-Hui  Wang  Cheng-Gang  Hu  Zong-Qiu 《Transition Metal Chemistry》2003,28(5):563-567
    N-2-Hydroxy-3-methoxy-benzalmethylene-O,O-diethylphosphorohydrazonothionate (HL) and its six complexes (ML2) with CuII, ZnII, NiII, FeII, CoII and MnII have been synthesized and characterized. The crystal structure of CuL2 shows that the metal ion is tetracoordinated, bound to 2N from imine and 2O from hydroxybenzene to form a parallelogram. The effects on Stenostigma remota cells of complexes CuL2, CoL2 and MnL2 have been determined by microcalorimetry, which indicates that the compounds inhibit the metabolism of the insect cells.  相似文献   

    9.
        
    The activity of –Al2O3-supported CuxMn3-xO4 catalysts towards the reduction of NO with CO has been investigated at temperatures of 150–500°C. It was established that the most active sample is Cu1.01Mn1.99O4/–Al2O3,i.e. the sample where the CuMn2O4 spinel is formed. In the presence of oxygen and the reducing agents CO and HC (a propane-butane mixture) oxygen has no blocking effect on the NO+CO reaction. Under oxidative conditions the reactions NO+CO and O2+CO are competitive.  相似文献   

    10.
    11.
    As a promising Li-ion battery cathode active material, lithium-rich manganese-based layer-structured oxides suffer from inferior cycle performance and poor rate capability. Herein, Nb-doped Li1.2Mn0.54Ni0.13Co0.13O2 is prepared by a sol-gel method, and the effects of Nb doping on its electrochemical performance are investigated. It is concluded that the Nb-doped Li1.2Mn0.54Ni0.13Co0.13O2, has a good layered structure along c-axis independent on the amount of Nb dopant and little cationic mixing. Nb doping for Li1.2Mn0.54Ni0.13Co0.13O2 has no obvious influence on its morphology. It is found that Nb doping can enhance the electrochemical activity of Li1.2Mn0.54Ni0.13Co0.13O2, such as improved rate performance and cycle performance under high rate conditions. Li1.2Mn0.54Ni0.13Co0.13O2 doped with 0.015 Nb shows the best cycle performance under the high rate with the capacity maintenance of 95.4% after 100 cycles under 5 C rate, which is higher than that of the undoped one by 10.5%.
    Graphical abstract Rate performance of Li1.2Mn0.54-xCo0.13Ni0.13Nb x O2 materials
      相似文献   

    12.
    The LiClO4-Al2O3 composite solid electrolyte and solid solutions LiFe x Mn2?x O4 and Li5Ti4O12 compositions are synthesized and their physicochemical properties are studied using the x-ray diffraction and electrical measurements. Based on composition 0.5LiClO4-0.5Al2O3, whose conductivity is the highest, first experiments on the elaboration of model electrochemical solid-electrolyte lithium cells with LiMn2O4, LiFeMnO4, LiFe0.8Mn0.2O4, and Li5Ti4O12 oxide spinel electrodes are performed.  相似文献   

    13.
    14.
    Yang  G.  Zhu  H.-G.  Chen  X.-M. 《Transition Metal Chemistry》2001,26(4-5):423-425
    The crystal structure of catena-diaquatetrakis(2-3,5-dinitrobenzoato-O,O)manganese(II) has been determined by X-ray diffraction. It consists of a chain with the 3,5-dinitrobenzoate group acting in the syn-anti 2-O,O-bridging fashion, in which the MnII atom is octahedrally coordinated by two aqua ligands [2.162(3) Å] and four carboxy oxygen atoms [Mn—O = 2.114(3) and 2.221(3) Å]. The X-band e.p.r. spectra of this complex show a hyperfine structure due to MnII (I = 5/2) with a splitting factor (A) of 97 G at 5 K and 93 G at 19 K, respectively.  相似文献   

    15.
    X-band and high-frequency EPR spectroscopy were used for studying the manganese environment in layered Li[MgxNi0.5−xMn0.5]O2, 0?x?0.5. Both layered LiMg0.5Mn0.5O2 and monoclinic Li[Li1/3Mn2/3]O2 oxides (containing Mn4+ ions only) were used as EPR standards. The EPR study was extended to the Ni-substituted analogues, where both Ni2+ and Mn4+ are paramagnetic. For LiMg0.5−xNixMn0.5O2 and Li[Li(1−2x)/3NixMn(2−x)/3]O2, an EPR response from Mn4+ ions only was detected, while the Ni2+ ions remained EPR silent in the frequency range of 9.23-285 GHz. For the diamagnetically diluted oxides, LiMg0.25Ni0.25Mn0.5O2 and Li[Li0.10Ni0.35Mn0.55]O2, two types of Mn4+ ions located in a mixed (Mn-Ni-Li)-environment and in a Ni-Mn environment, respectively, were registered by high-field experiments. In the X-band, comparative analysis of the EPR line width of Mn4+ ions permits to extract the composition of the first coordination sphere of Mn in layered LiMg0.5−xNixMn0.5O2 (0?x?0.5) and Li[Li(1−2x)/3NixMn(2−x)/3]O2 (x>0.2). It was shown that a fraction of Mn4+ are in an environment resembling the ordered “α,β”-type arrangement in Li1−δ1Niδ1[Li(1−2x)/3+δ1Ni2x/3−δ1)α(Mn(2−x)/3Nix/3)β]O2 (where and δ1=0.06 were calculated), while the rest of Mn4+ are in the Ni,Mn-environment corresponding to the Li1−δ2Niδ2[Ni1−yMny]O2 () composition with a statistical Ni,Mn distribution. For Li[Li(1−2x)/3NixMn(2−x)/3]O2 with x?0.2, IR spectroscopy indicated that the ordered α,β-type arrangement is retained upon Ni introduction into monoclinic Li[Li1/3Mn2/3]O2.  相似文献   

    16.
    Synthesis and Crystal-Structure of Na2Mn3O7 Single crystals of Na2Mn3O7 have been grown hydrothermally applying high oxygen pressure (p = 2 kbar). The new compound cystallizes triclinic; space group P1 ; a = 6.636(6) Å, b = 6.854(6) Å, c = 7.548(6) Å, α = 105.76(6)°, β = 106.86(6)°, γ = 111.60(6)°; Z = 2. The crystal structure has been solved and refined to R = 7.9% and Rw = 6.2% (diffractometer data, 1044 independent reflexions). The crystal structure consists of Mn3O72? anions with manganese coordinated octahedrally by oxygen. These layered anions are hold together by Na+ ions (coordination numbers 5 and 6).  相似文献   

    17.
    In this paper, the LiNi0.5Mn1.5O4 cathode materials of lithium-ion batteries are synthesized by a co-precipitation spray-drying and calcining process. The use of a spray-drying process to form particles, followed by a calcination treatment at the optimized temperature of 750 °C to produce spherical LiNi0.5Mn1.5O4 particles with a cubic crystal structure, a specific surface area of 60.1 m2 g?1, a tap density of 1.15 g mL?1, and a specific capacity of 132.9 mAh g?1 at 0.1 C. The carbon nanofragment (CNF) additives, introduced into the spheres during the co-precipitation spray-drying period, greatly enhance the rate performance and cycling stability of LiNi0.5Mn1.5O4. The sample with 1.0 wt.% CNF calcined at 750 °C exhibits a maximum capacity of 131.7 mAh g?1 at 0.5 C and a capacity retention of 98.9% after 100 cycles. In addition, compared to the LiNi0.5Mn1.5O4 material without CNF, the LiNi0.5Mn1.5O4 with CNF demonstrates a high-rate capacity retention that increases from 69.1% to 95.2% after 100 cycles at 10 C, indicating an excellent rate capability. The usage of CNF and the synthetic method provide a promising choice for the synthesis of a stabilized LiNi0.5Mn1.5O4 cathode material.
    Graphical Abstract Micro/nanostructured LiNi0.5Mn0.5O4 cathode materials with enhanced electrochemical performances for high voltage lithium-ion batteries are synthesized by a co-precipitation spray-drying and calcining routine and using carbon nanofragments (CNFs) as additive.
      相似文献   

    18.
    Water exchange on Mn centers in proteins has been modeled with density functional theory using the B3LYP functional. The reaction barrier for dissociative water exchange on [MnIV(H2O)2(OH)4] is only 9.6 kcal mol–1, corresponding to a rate of 6×105 s–1. It has also been investigated how modifications of the model complex change the exchange rate. Three cases of water exchange on Mn dimers have been modeled. The reaction barrier for dissociative exchange of a terminal water ligand on [(H2O)2(OH)2MnIV(-O)2MnIV(H2O)2(OH)2] is 8.6 kcal mol–1, while the bridging oxo group exchange with a ring-opening mechanism has a barrier of 19.2 kcal mol–1. These results are intended for interpretations of measurements of water exchange for the oxygen evolving complex of photosystem II. Finally, a tautomerization mechanism for exchange of a terminal oxyl radical has been modeled for the synthetic O2 catalyst [(terpy)(H2O)MnIV(-O)2MnIV(O)(terpy)]3+ (terpy=2,2:6,2-terpyridine). The calculated reaction barrier is 14.7 kcal mol–1.Contribution to the Björn Roos Honorary Issue  相似文献   

    19.
    Subsolidus phase relations have been determined for the Bi-Mn-Nb-O system in air (750-900 °C). Phases containing Mn2+, Mn3+, and Mn4+ were all observed. Ternary compound formation was limited to pyrochlore (A2B2O6O′), which formed a substantial solid solution region at Bi-deficient stoichiometries (relative to Bi2(Mn,Nb)2O7) suggesting that ≈14-30% of the A-sites are occupied by Mn (likely Mn2+). X-ray powder diffraction data confirmed that all Bi-Mn-Nb-O pyrochlores form with structural displacements, as found for the analogous pyrochlores with Mn replaced by Zn, Fe, or Co. A structural refinement of the pyrochlore 0.4000:0.3000:0.3000 Bi2O3:Mn2Ox:Nb2O5 using neutron powder diffraction data is reported with the A and O′ atoms displaced (0.36 and 0.33 Å, respectively) from ideal positions to 96g sites, and with Mn2+ on A-sites and Mn3+ on B-sites (Bi1.6Mn2+0.4(Mn3+0.8Nb1.2)O7, (?227), a=10.478(1) Å); evidence of A or O′ vacancies was not found. The displacive disorder is crystallographically analogous to that reported for Bi1.5Zn0.92Nb1.5O6.92, which has a similar concentration of small B-type ions on the A-sites. EELS spectra for this pyrochlore were consistent with an Mn oxidation between 2+ and 3+. Bi-Mn-Nb-O pyrochlores exhibited overall paramagnetic behavior with negative Curie-Weiss temperature intercepts, slight superparamagnetic effects, and depressed observed moments compared to high-spin, spin-only values. At 300 K and 1 MHz the relative dielectric permittivity of Bi1.600Mn1.200Nb1.200O7 was ≈128 with tan δ=0.05; however, at lower frequencies the sample was conductive which is consistent with the presence of mixed-valent Mn. Low-temperature dielectric relaxation such as that observed for Bi1.5Zn0.92Nb1.5O6.92 and other bismuth-based pyrochlores was not observed. Bi-Mn-Nb-O pyrochlores were readily obtained as single crystals and also as textured thin films using pulsed laser deposition.  相似文献   

    20.
    A new mixed-valent manganese phosphate, , has been synthesized using hydrothermal method. Its monoclinic C2/c structure (a=12.5506(16) Å, b=10.4816(18) Å, c=13.6723(10) Å, β=103.758(11)°) forms a 3D framework of MnO6 octahedra, MnO5 trigonal bipyramids, PO4 and PO3OH tetrahedra. The main structural feature of this phosphate deals with its [Mn4O16] chains running along , which are interconnected through PO4 and PO3OH tetrahedra, forming intersecting tunnels running along [110], and [001]. The geometry of the [Mn4O16] chains and the charge ordering of manganese in the latter are unique: they consist of trimeric units of divalent manganese “” alternating with single trivalent MnIIIO6 octahedra along . In each “” unit one central MnIIO6 octahedron shares two opposite edges with two MnIIO5 trigonal bipyramids. Along , one Mn(II) octahedron alternates with one Mn(III) octahedron by sharing one corner. The relationships between the structure of this unique charge ordered phosphate and other manganese phosphates are discussed.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号