首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Relationship between a radical species and radical acceptors of three different types of double bond in radical addition-cyclization was systematically investigated. Substrates carrying alpha,beta-unsaturated amide, isolated olefin, and oxime ether moieties underwent radical addition-cyclization to give differently substituted lactams depending upon the radicals used. The sulfanyl radical addition-cyclization of the substrate proceeded smoothly to give the 5-membered lactam having an alkoxyamino group as a result of preferable addition of an intermediary alpha-carbonyl radical to the oxime ether. On the other hand, the triethylborane-mediated radical addition-cyclization gave the lactam bearing an iodomethyl group as a result of addition to an intermediary alpha-carbonyl radical to isolated olefin. The different regioselectivity was explained by the stability of the intermediary radical and the interaction between SOMO and HOMO.  相似文献   

2.
Hydroxymethylation of alkyl halides was achieved using paraformaldehyde as a radical C1 synthon in the presence of tetrabutylammonium cyanoborohydride as a hydrogen source. The reaction proceeds via a radical chain mechanism involving an alkyl radical addition to formaldehyde to form an alkoxy radical, which abstracts hydrogen from a hydroborate anion.  相似文献   

3.
The reaction of phenoxyl radicals with acids is investigated. 2,4,6-Tri-tert-butylphenoxyl radical (13), a persistent radical, deteriorates in MeOH/PhH in the presence of an acid yielding 4-methoxycyclohexa-2,5-dienone 18a and the parent phenol (14). The reaction is facilitated by a strong acid. Treatment of 2,6-di-tert-butyl-4-methylphenoxyl radical (2), a short-lived radical, generated by dissociation of its dimer, with an acid in MeOH provides 4-methoxycyclohexa-2,5-dienone 4 and the products from disproportionation of 2 including the parent phenol (3). A strong acid in a high concentration favors the formation of 4 while the yield of 3 is always kept high. Oxidation of the parent phenol (33) with PbO(2) to generate transient 2,6-di-tert-butylphenoxyl radical (35) in AcOH/H(2)O containing an added acid provides eventually p-benzoquinone 39 and 4,4'-diphenoquinone 42, the product from dimerization of 35. A strong acid in a high concentration favors the formation of 39. These results suggest that a phenoxyl radical is protonated by an acid and electron transfer takes place from another phenoxyl radical to the protonated phenoxyl radical, thus generating the phenoxyl cation, which can add an oxygen nucleophile, and the phenol (eq 5). The electron transfer is a fast reaction.  相似文献   

4.
Radical S‐adenosyl‐l ‐methionine (SAM) enzymes utilize a [4Fe‐4S] cluster to bind SAM and reductively cleave its carbon–sulfur bond to produce a highly reactive 5′‐deoxyadenosyl (dAdo) radical. In almost all cases, the dAdo radical abstracts a hydrogen atom from the substrates or from enzymes, thereby initiating a highly diverse array of reactions. Herein, we report a change of the dAdo radical‐based chemistry from hydrogen abstraction to radical addition in the reaction of the radical SAM enzyme NosL. This change was achieved by using a substrate analogue containing an olefin moiety. We also showed that two SAM analogues containing different nucleoside functionalities initiate the radical‐based reactions with high efficiencies. The radical adduct with the olefin produced in the reaction was found to undergo two divergent reactions, and the mechanistic insights into this process were investigated in detail. Our study demonstrates a promising strategy in expanding radical SAM chemistry, providing an effective way to access nucleoside‐containing compounds by using radical SAM‐dependent reactions.  相似文献   

5.
The Friedel–Crafts acylation reaction, which belongs to the class of electrophilic aromatic substitutions is a highly valuable and versatile reaction in synthesis. Regioselectivity is predictable and determined by electronic as well as steric factors of the (hetero)arene substrate. Herein, a radical approach for the acylation of arenes and heteroarenes is presented. C−H acylation is achieved through mild cooperative photoredox/NHC radical catalysis with the cross-coupling of an arene radical cation with an NHC-bound ketyl radical as a key step. As compared to the classical Friedel–Crafts acylation, a regiodivergent outcome is observed upon switching from the ionic to the radical mode. In these divergent reactions, aroyl fluorides act as the acylation reagents in both the ionic as well as the radical process.  相似文献   

6.
Horner JH  Lal M  Newcomb M 《Organic letters》2006,8(24):5497-5500
The kinetics of radical heterolysis reactions, including rate constants for radical cation-anion contact ion pair formation, collapse of the contact pair back to the parent radical, and separation of the contact pair to a solvent-separated ion pair or free ions were obtained in several solvents for a beta-mesyloxy radical. Rate constants were determined from indirect kinetic studies using thiophenol as both a radical trapping agent via H-atom transfer and an alkene radical cation trapping agent via electron transfer. [reaction: see text].  相似文献   

7.
The reductive lithiation of nitrile 9 led to the cyclic product 11 as a single diastereomer in 42% ee. The intermediate radical is a conformational radical clock. The radical lifetime can be determined from the optical purity of the product 11. We show that the lifetime of the intermediate radical is too brief to allow a radical cyclization, and thus the cyclization proceeds through an alkyllithium intermediate.  相似文献   

8.
A novel cascade radical reaction is described involving aryl isothiocyanates and 2-cyanoaryl radicals. The mechanism entails the formation of an alpha-(arylthio)imidoyl radical, a 5-exo-dig cyclization onto a cyano group, and a final 6-membered ring closure of an iminyl radical. The competitive 5-membered spiro-cyclization of the iminyl, leading to an isomeric product, was only observed in the case of a disubstituted aryl isothiocyanate. The whole process involves a rare example of [3 + 2] radical annulation and allows the one-pot synthesis of tetracondensed nitrogen heterocycles in good yields.  相似文献   

9.
The thermochemical properties of benzoylnitrene radical anion, C6H5CON-, were determined by using a combination of energy-resolved collision-induced dissociation (CID) and proton affinity bracketing. Benzoylnitrene radical anion dissociates upon CID to give NCO- and phenyl radical with a dissociation enthalpy of 0.85 +/- 0.09 eV, which is used to derive an enthalpy of formation of 33 +/- 9 kJ/mol for the nitrene radical anion. Bracketing studies with the anion indicate a proton affinity of 1453 +/- 10 kJ/mol, indicating that the acidity of benzamidyl radical, C6H5CONH, is between those of benzamide and benzoic acid. Combining the measurements gives an enthalpy of formation for benzamidyl radical of 110 +/- 14 kJ/mol and a homolytic N-H bond dissociation energy in benzamide of 429 +/- 14 kJ/mol. Additional thermochemical properties obtained include the electron affinity of benzamidyl radical, the hydrogen atom affinity of benzoylnitrene radical anion, and the oxygen anion affinity of benzonitrile.  相似文献   

10.
The preliminary results of an investigation toward a synthesis of furoindolines from 3-(2-hydroxyethyl)indolines by remote radical functionalization are described. Using an oxidative radical cyclization, it was discovered that the intramolecular hydrogen abstraction was only successful when the resulting radical (and hence carbocation) was resonance stabilized by adjacent tertiary amine and phenyl groups. The successful cyclization affords diastereomeric furoindolines, one of which contains a highly strained trans-fused 5,5-ring system. This furoindoline synthesis contains a rare example of an alkoxy radical promoted hydrogen atom transfer of a proton attached to a nitrogen-substituted carbon.  相似文献   

11.
High-level ab initio calculations have been used to study the mechanism for the inactivation of diol dehydratase (DDH) by glycolaldehyde or 2-chloroacetaldehyde. As in the case of the catalytic substrates of DDH, e.g., ethane-1,2-diol, the 5'-deoxyadenosyl radical (Ado*) is able to abstract a hydrogen atom from both substrate analogues in the initial step on the reaction pathway, as evidenced by comparable energy barriers. However, in subsequent step(s), each substrate analogue produces the highly stable glycolaldehyde radical. The barrier for hydrogen atom reabstraction by the glycolaldehyde radical is calculated to be too high ( approximately 110 kJ mol-1) to allow Ado* to be regenerated and recombine with the cob(II)alamin radical, the latter therefore remaining tightly bound to DDH. As a consequence, the catalytic pathway is disrupted, and DDH becomes an impotent enzyme. Interconversion of equivalent structures of the glycolaldehyde radical via the symmetrical cis-ethanesemidione radical is calculated to require 38 kJ mol-1. EPR indications of a symmetrical cis-ethanesemidione structure are likely to be the result of formation of an equilibrium mixture of glycolaldehyde radical structures, this equilibration being facilitated by partial deprotonation of the glycolaldehyde radical by the carboxylate of an amino acid residue within the active site of DDH.  相似文献   

12.
郭国哲 《化学通报》2023,86(3):290-299
自由基正离子含有一个正电荷和一对未成对电子,是很多有机化学反应的重要的活性中间体。文章综述了近几年自由基正离子反应研究进展,主要包括化学氧化剂诱导的自由基正离子反应、可见光诱导的自由基正离子反应、电诱导的自由基正离子反应等方面的研究。  相似文献   

13.
One-electron reduction significantly enhances the ability of anthralin, 1, to act as a hydrogen atom donor. On annealing of an MTHF glass in which the radical anion of anthralin, 1*-, is generated radiolytically, this species decays mainly by loss of H* to give the anthralyl anion, 2- . On the other hand, radicals formed on radiolysis of matrices that are suitable for the generation of radical anions or cations are capable to abstract H* from anthralin to give the anthralyl radical, 2* . Both 2- and 2* are obtained simultaneously by mesolytic cleavage of the radical anion of the anthralin dimer. Contrary to general assumptions, the anthralyl radical is found to be much more reactive toward oxygen than the anion. All intermediates are characterized spectroscopically and by reference to quantum chemical calculations. Attempts to generate the radical cation of anthralin by X-irradiation of an Ar matrix containing anthralin led also to significant formation of its radical anion, i.e., anthralin acts apparently as an efficient electron trap in such experiments.  相似文献   

14.
4-[(Trimethylstannyl)diphenylsilyl]butanoyl radical, arising from the corresponding 3-(stannylsilyl)propyl radical and CO, undergoes an SHi reaction at Si with extrusion of trimethyltin radical to give silacyclopentanone. The parent 3-(stannylsilyl)propyl radical was also found to isomerize to (3-stannylpropyl)silyl radical via a 1,4-Sn shift from Si to C with a rate constant of 9.3 x 10(4) s-1 at 80 degrees C. Ab initio and DFT MO calculations support a front-side attack mechanism.  相似文献   

15.
Rate coefficients for alkyl and alkoxy radical decomposition are important in combustion, biological, and atmospheric processes. In this paper, rate constant expressions for C1? C4 alkyl and alkoxy radicals decomposition via β‐scission are recommended based on the reverse, exothermic reaction, the addition of a hydrogen atom or an alkyl radical to an olefin or carbonyl species with the decomposition reaction calculated using microscopic reversibility. The rate expressions have been estimated based on a wide‐range study of available experimental data. Rate coefficients for hydrogen atom and alkyl radical addition to an olefin show a strong temperature curvature. In addition, it is found that there is a correlation between the activation energy for addition and (i) the type of atom undergoing addition and (ii) whether this radical adds to the internal or terminal carbon atom of the olefin. Rate coefficients for alkoxy radical decomposition show a strong correlation to the ionization potential of the alkyl radical leaving group and on the enthalpy of reaction. It is shown that the activation energy for alkyl radical addition to a carbonyl species can be estimated as a function of the alkyl radical ionization potential and enthalpy of reaction. © 2006 Wiley Periodicals, Inc. Int J Chem Kinet 38: 250–275, 2006  相似文献   

16.
Abstract— Illumination with red light of a degassed solution of bacteriochlorophyll and benzoquinone or ubiquinone in dry acetone at low temperatures (< - 105°C) leads to the formation of the bacteriochlorophyll cation radical and the quinone anion radical, as detected by ESR spectroscopy. At temperatures around - 110°C, the quinone radical signal corresponds to an emission of microwave radiation. These results are interpreted in terms of a one-electron transfer from a spin-polarized bacteriochlorophyll triplet state to the quinone, producing an anion radical which is predominantly in the upper spin state.  相似文献   

17.
The oxidation of linoleic acid yields isomeric acyl hydroperoxides. In order to clarify the relation between the lipid peroxide-derived radicals and the toxicity of the lipid peroxide, identification of the lipid-derived radicals is essential. In this paper, high performance liquid chromatography/electron spin resonance/mass spectrometry (HPLC/EPR/MS) analysis of the radicals was performed for the reaction mixture containing 9-hydroperoxy-(10E,12E)-octadeca-10,12-dienoic acid (9EE-OOH) [or 13-hydroperoxy-(9Z,11E)-octadeca-9,11-dienoic acid (13ZE-OOH)] under an aerobic condition or an anaerobic condition. Following radicals were identified from 9EE-OOH (or 13EZ-OOH) by using high performance liquid chromatography/electron spin resonance spectrometry (HPLC/EPR) and HPLC/EPR/MS: pentyl radical and isomers of epoxylinoleic acid radicals from 13EZ-OOH under an anaerobic condition; 7-carboxyheptyl radical and pentyl radical from 13EZ-OOH under an aerobic condition; 7-carboxyheptyl radical and pentyl radical from 9EE-OOH under an aerobic condition; 7-carboxyheptyl radical from 9EE-OOH under an anaerobic condition. These results showed that the formation of the respective radical species depends on oxygen concentration in the reaction mixtures to a great extent.  相似文献   

18.
Azabicyclo[4.3.0]nonanes were assembled, from chiral allylsilanes possessing an oxime moiety, using a stereocontrolled formal [2 + 2 + 2] radical-ionic process. The cascade involves the addition of an alpha-iodoester to the less substituted end of the enoxime which is then followed by a 5-exo-trig cyclization onto the aldoxime function, producing an alkoxyaminyl radical species which finally lactamizes to afford the titled piperidinone. High levels of stereoinduction were observed, demonstrating the ability of a silicon group located at the allylic position to efficiently control the stereochemistry of the two newly created stereogenic centers. When the radical cascade was extended to ketoximes, the resulting sterically hindered alkoxyaminyl radical did not react further with the initiator Et3B to produce the expected nucleophilic amidoborane complex. In sharp contrast, this long-lived radical recombined with the initial alpha-stabilized ester radical to produce a cyclopentane incorporating two ester fragments.  相似文献   

19.
An intermolecular, two‐component vicinal carboimination of alkenes has been accomplished by energy transfer catalysis. Oxime esters of alkyl carboxylic acids were used as bifunctional reagents to generate both alkyl and iminyl radicals. Subsequently, addition of the alkyl radical to an alkene generates a transient radical for selective radical–radical cross‐coupling with the persistent iminyl radical. Furthermore, this process provides direct access to aliphatic primary amines and α‐amino acids by simple hydrolysis.  相似文献   

20.
Reaction of one-electron oxidant (Br(2)(*-)) with tryptophol (TP) and 5-hydroxytryptophol (HTP) have been studied in aqueous solution in the pH range from 3 to 10, employing nanosecond pulse radiolysis technique and the transients detected by kinetic spectrophotometry. One-electron oxidation of TP has produced an indolyl radical that absorbs in the 300-600 nm region with radical pK(a) = 4.9 +/- 0.2, while the reaction with HTP has produced an indoloxyl radical with lambda(max) at 420 nm and radical pK(a) < 3. Hydroxyl radicals ((*)OH) react with these two compounds producing (*)OH radical adducts that undergo water elimination to give one-electron-oxidized indolyl and indoloxyl radical species, respectively. The indoloxyl radicals react with the parent compound to form dimer radicals with an average association constant of (6.7 +/- 0.4) x 10(4) M(-1). No such dimerization is observed with indolyl radical, indicating that the presence of the 5-hydroxy group markedly alters its ability to form a dimer. A possible explanation behind such a difference in reactivity has been supported with ab initio quantum chemical calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号