首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A computational study of (ethanol)(n)-water, n = 1 to 5 heteroclusters was carried out employing the B3LYP∕6-31+G(d) approach. The molecular (MO) and atomic (AO) orbital analysis and the topological study of the electron density provided results that were successfully correlated. Results were compared with those obtained for (ethanol)(n), (methanol)(n), n = 1 to 6 clusters and (methanol)(n)-water, n = 1 to 5 heteroclusters. These systems showed the same trends observed in the (ethanol)(n)-water, n = 1 to 5 heteroclusters such as an O---O distance of 5 ? to which the O-H---O hydrogen bonds (HBs) can have significant influence on the constituent monomers. The HOMO of the hetero(clusters) is less stable than the HOMO of the isolated alcohol monomer as the hetero(cluster) size increases, that destabilization is higher for linear geometries than for cyclic geometries. Changes of the occupancy and energy of the AO are correlated with the strength of O-H---O and C-H---O HBs as well as with the proton donor and/or acceptor character of the involved molecules. In summary, the current MO and AO analysis provides alternative ways to characterize HBs. However, this analysis cannot be applied to the study of H---H interactions observed in the molecular graphs.  相似文献   

2.
We have carried out a series of molecular dynamics simulations to investigate the hydrogen bond and residence dynamics of X(-)-water (X=F, Cl, and I) and pairs in aqueous solutions at a temperature of 673 K. The calculations are done at six different water densities ranging from 1.0 to 0.15 g cm(-3). The hydrogen bonds are defined by using a set of configurational criteria with respect to the anion(oxygen)-oxygen and anion(oxygen)-hydrogen distances and the anion(oxygen)-oxygen-hydrogen angle for an anion(water)-water pair. The F(-)-water hydrogen bonds are found to have a longer lifetime than all other hydrogen bonds considered in the present study. The lifetime of Cl(-)-water hydrogen bonds is shorter than that of F(-)-water hydrogen bonds but longer than the lifetime of water-water hydrogen bonds. The lifetimes of I(-)-water and water-water hydrogen bonds are found to be very similar. Generally, the lifetimes of both anion-water and water-water hydrogen bonds are found to be significantly shorter than those found under ambient conditions. In addition to hydrogen bond lifetimes, we have also calculated the residence times and the orientational relaxation times of water molecules in ion(water) hydration shells and have discussed the correlations of these dynamical quantities with the observed dynamics of anion(water)-water hydrogen bonds as functions of the ion size and density of the supercritical solutions.  相似文献   

3.
We have carried out a series of molecular dynamics simulations to investigate the dynamics of X(-)-water (X = F, Cl, Br, and I) and water-water hydrogen bonds in aqueous alkali halide solutions at room temperature and also of Cl(-)-water and water-water hydrogen bonds at seven different temperatures ranging from 238 to 318 K. The hydrogen bonds are defined by using a set of configurational criteria with respect to the anion(oxygen)-oxygen and anion(oxygen)-hydrogen distances and the anion(oxygen)-oxygen-hydrogen angle for an anion(water)-water pair. The results of the hydrogen bond dynamics are obtained for two different cutoff values for the angular criterion. In both cases, similar dynamical behavior of the hydrogen bonds is found with respect to their dependence on ion size and temperature. The fluoride ion-water hydrogen bonds are found to break at a much slower rate than water-water hydrogen bonds, while the lifetimes of chloride and bromide ion-water hydrogen bonds are found to be shorter than those of fluoride ion-water ones but still longer than water-water hydrogen bonds. The short-time dynamics of iodide ion-water hydrogen bonds is found to be slightly faster, while its long-time dynamics is found to be slightly slower than the corresponding water-water hydrogen bond dynamics. Correlations of the observed dynamics of anion(water)-water hydrogen bonds with those of rotational and translational diffusion and residence times of water molecules in ion(water) hydration shells are also discussed. With variation of temperature, the lifetimes of both Cl(-)-water and water-water hydrogen bonds are found to show Arrhenius behavior with a slightly higher activation energy for the Cl(-)-water hydrogen bonds.  相似文献   

4.
A DFT electronic structure study of the (ethanol)4–water heteropentamers at the B3LYP/6‐31+G(d) model chemistry was carried out. To get determine possible configurations, the potential energy surface (PES) was explored with two methods: simulated annealing and ab initio molecular dynamics. The results suggest that the PES is very flat. A total of 81 stable structures were determined. These structures were classified into 16 different geometric patterns according to geometric criteria like the number of hydrogen bonds and their spatial arrangement: cyclic, bicyclic, or lineal patterns. Thermodynamic stability was used for defining the order of such classification. Hydrogen bonds are mutually disturbed due to the existence of cooperative effects. Cooperativity affects the nature of the hydrogen bonds and the overall stability of the ethanol–water system given that the strongest interactions are markedly covalent and the most stable geometric pattern corresponds to the pentagonal arrangement. These observations were supported by the analysis of the loss of atomic charge of the hydrogen atoms involved in hydrogen bonds. These hydrogen bonds were classified as primary and secondary hydrogen bonds: O? H ··· O and C? H ··· O, respectively. For comparative purposes, some (ethanol)5, (methanol)5, and (methanol)4–water clusters were characterized in this study. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

5.
Hydration of short-chain poly(oxyethylene)s, CH(3)(OCH(2)CH(2))(m)OCH(3) (abbreviated as C(1)E(m)()C(1)) (m = 1-3), in carbon tetrachloride has been studied by infrared spectroscopy. The O-H stretching vibrations of water in ternary solutions with H(2)O:C(1)E(m)C(1):CCl(4) mole ratios of 0.000418:0.005:0.995 to 0.000403:0.04:0.96 were analyzed. Two types of hydrogen bonds are formed in the interaction between water and C(1)E(m)C(1) in carbon tetrachloride; one is a monodentate hydrogen bond, in which only one of the O-H bonds of a water molecule participates in hydrogen bonding, and the other is a bidentate hydrogen bond, in which both of the O-H bonds of a water molecule participate in hydrogen bonding by bridging oxygen atoms separated by two or more monomer units on the polymer chain. An important finding is that the bidentate hydrogen-bond bridge is not formed between the nearest-neighbor oxygen atoms. This experimental observation supports the results of previous molecular dynamics simulations. The shortest oligomer of poly(oxyethylene), i.e., CH(3)OCH(2)CH(2)OCH(3) (1,2-dimethoxyethane) with a single monomer unit, is suggested not to be an adequate model for this polymer with respect to hydrogen bonding to water. The hydrogen bonding in a 1:1 C(1)E(m)C(1)-water adduct in carbon tetrachloride represents primitive incipient hydration of poly(oxyethylene). The present results indicate that both monodentate and bidentate hydrogen bonds are important and the latter is destabilized more rapidly than the former with increasing temperature. This dehydration process can be a potential mechanism of the poly(oxyethylene)-water phase separation.  相似文献   

6.
采用Car-Parrinello 分子动力学(CPMD)方法分别研究了水、甲醇和乙醇的液体微结构性质.研究结果显示:在水、甲醇和乙醇三个体系中O…O径向分布函数曲线的第一个峰位置分别为0.278、0.276 和0.275nm; O…H径向分布函数曲线的第一个峰位置分别为0.178、0.176和0.177 nm.表明基团(氢原子、甲基、乙基)的差异对O…O第一个峰的位置影响很小.但基团的差异对径向分布函数峰高的影响却很显著,由水到乙醇第一个峰的高度逐渐变高.空间分布函数表明氧原子和氢原子在溶剂分子周围有取向地分布,这与径向分布函数所表现出尖锐的第一个峰相一致.氢键分布分析显示,水、甲醇和乙醇的平均氢键数分别为3.62、1.99 和1.87,表明水形成了网状氢键结构,而甲醇、乙醇形成链状氢键结构.  相似文献   

7.
8.
Various properties (such as optimal structures, structural parameters, hydrogen bonds, natural bond orbital charge distributions, binding energies, electron densities at hydrogen bond critical points, cooperative effects, and so on) of gas phase ethanol–(water)n (n = 1–5) clusters with the change in the number of water molecules have been systematically explored at the MP2/aug‐cc‐pVTZ//MP2/6‐311++G(d,p) computational level. The study of optimal structures shows that the most stable ethanol‐water heterodimer is the one where exists one primary hydrogen bond (O? H…O) and one secondary hydrogen bond (C? H …O) simultaneously. The cyclic geometric pattern formed by the primary hydrogen bonds, where all the molecules are proton acceptor and proton donor simultaneously, is the most stable configuration for ethanol–(water)n (n = 2–4) clusters, and a transition from two‐dimensional cyclic to three‐dimensional structures occurs at n = 5. At the same time, the cluster stability seems to correlate with the number of primary hydrogen bonds, because the secondary hydrogen bond was extremely weaker than the primary hydrogen bond. Furthermore, the comparison of cooperative effects between ethanol–water clusters and gas phase pure water clusters has been analyzed from two aspects. First of all, for the cyclic structure, the cooperative effect in the former is slightly stronger than that of the latter with the increasing of water molecules. Second, for the ethanol–(water)5 and (water)6 structure, the cooperative effect in the former is also correspondingly stronger than that of the latter except for the ethanol–(water)5 book structure. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
The title complex [Na(H2MIA-)(H2O)](1,H3MIA = 2-methyl-1H-imidazole-4,5-dicarboxylic acid) has been synthesized by hydrothermal synthesis and structurally characterized by X-ray crystallography.Compound 1 crystallizes in orthorhombic,space group ibam with a = 14.4737(19),b = 17.553(2),c = 6.5285(9),V = 1658.6(4) 3,C6H7N2NaO5,Mr = 210.12,Z = 8,Dc = 1.675 g/cm3,F(000) = 864,μ = 0.188 mm-1,λ(MoKα) = 0.071073 ,R = 0.0383 and wR = 0.0987 for 1046 observed reflections(I > 2σ(I)).In the structure of 1,each coordination water coordinates with two Na(I) ions at the same time and links the neighboring Na(I) ions to form a one-dimensional Na(I)-water chain.Each H2MIA-ligand links the neighboring Na(I) of Na(I)-water chain to form a novel two-dimensional supramolecular network.The 2-D network is stabilized by O-H…N hydrogen bonds and π-π interaction.The 2D network is further linked via O-H…O hydrogen bonds to yield a three-dimensional framework.  相似文献   

10.
Solvent‐free (2S)‐methyl 2‐ammonio‐3‐(4‐hydroxy­phenyl)­propionate chloride, C10H14NO3+·Cl, (I), and its methanol solvate, C10H14NO3+·Cl·CH3OH, (II), are obtained from different solvents: crystallization from ethanol or propan‐2‐ol gives the same solvent‐free crystals of (I) in both cases, while crystals of (II) were obtained by crystallization from methanol. The structure of (I) is characterized by the presence of two‐dimensional layers linked together by N—H⋯Cl and O—H⋯Cl hydrogen bonds and also by C—H⋯O contacts. Incorporation of the methanol solvent mol­ecule in (II) introduces additional O—H⋯O hydrogen bonds linking the two‐dimensional layers, resulting in the formation of a three‐dimensional network.  相似文献   

11.
原位ATR红外光谱研究超临界条件下酯交换反应过程与机理   总被引:1,自引:0,他引:1  
在温度15℃~300℃和压力0.1MPa~25MPa下,采用原位ATR(Attenuated Total Reflectance)红外光谱技术研究高温高压条件下甲醇、乙醇和丙醇的分子间氢键和分子内化学键随温度和压力的变化及亚/超临界甲醇条件下醇油的混合与酯交换反应过程与机理。纯物质的红外光谱研究表明,在压力高于14MPa时,随温度由15℃升高到250℃,甲醇、乙醇和丙醇的分子间氢键减弱,减弱程度最大的温度为75℃~225℃;但温度升高对甲基的振动没有影响,当温度超过225℃后,甲醇的羟基振动峰发生明显分峰,而乙醇和丙醇的羟基振动峰未发现分峰变化;在整个温度和压力范围内,三油酸甘油酯的红外光谱图未发生明显变化。醇油混合与酯交换反应过程的红外研究表明,在14MPa时,当温度超过185℃后甲醇与三油酸甘油酯完全互溶,两者形成均相;当混合体系温度超过220℃时,甲醇与三油酸甘油酯开始发生酯交换反应。因此,超临界甲醇条件下的酯交换是均相反应,而且氢键变化不是导致酯交换反应的主要原因,高温高压条件下C-OH键振动形式的变化,即出现C+…O-…H+振动使小分子醇的亲电性和亲核性均增强是导致超临界无催化酯交换反应快速进行的主要原因。  相似文献   

12.
Large-angle X-ray scattering (LAXS) measurements over a temperature range from 223 to 298 K have been made on methanol confined in mesoporous silica MCM-41 with two different pore diameters, 28 A (C14) and 21 A (C10), under both monolayer and capillary-condensed adsorption conditions. To compare the structure of methanol in the MCM-41 pores with that of bulk methanol, X-ray scattering intensities for bulk methanol in the same temperature range have also been measured. The radial distribution functions (RDFs) for the monolayer methanol samples showed that methanol molecules are strongly hydrogen bonded to the silanol groups on the MCM-41 surface, resulting in no significant change in the structure of adsorbed methanol with respect to the pore size and temperature. On the other hand, the RDFs for the capillary-condensed methanol samples showed that hydrogen-bonded chains of methanol molecules are formed in both pores. However, the distance and number of hydrogen bonds estimated from the RDFs suggested that hydrogen bonds between methanol molecules in the pores are significantly distorted or partly disrupted. It has been found that the hydrogen bonds are more distorted in the smaller pores of MCM-41. With decreasing temperature, however, the hydrogen-bonded chains of methanol in the pores were gradually ordered. A comparison of the present results on methanol in MCM-41 pores with those on water in the same pores revealed that the structural change with temperature is less significant for confined methanol than for confined water.  相似文献   

13.
In the photolysis of diazomethane-methanol. mixture, the reaction of methylene with methanol gives dimethyl ether and ethanol as products. The ratio of dimethyl ether to ethanol is found to be independent to pressure and to. the composition of diazomethane-methanol mixture. Methylene insertion into O—H bond is about 11 times faster than that into C—H bonds of methanol. The ratio decreases with increase of temperature. In the diazomethane-ethanol system, ethylmethyl ether, propanol-1 and propanol-2 are found as the products of insertion reaction of methylene into ethanol. The ratios of ethylmethyl ether to propanol-1 and to propanol-2 are both found to be almost constant and independent to pressure and to the composition of diazomethane-ethanol mixture. A small temperature effect on the ratios are observed. The rate of insertion of methylene into O—H bond is about 7.3 and 14.2 times faster than those into primary and secondary C—H bonds of ethanol, respectively.  相似文献   

14.
The structures of 1-benzyl-4-nitroso-5-aminopyrazole (1) and its hydrochloride (1H+) have been determined in the solid state and in solution in DMSO, methanol, and ethanol. The free base exists in solution as a mixture of amino/nitroso tautomers 2a and 2b rather than in the imino/oxime tautomers 3. The conjugated cation 1H+ results from the protonation of the nitroso group. X-ray crystallography showed that both amino hydrogen atoms of 2a form NH...O=N hydrogen bonds: one is intramolecular, the other links adjacent molecules in an infinite chain.  相似文献   

15.
2‐{1‐[(4‐Chloroanilino)methylidene]ethyl}pyridinium chloride methanol solvate, C13H13ClN3+·Cl·CH3OH, (I), crystallizes as discrete cations and anions, with one molecule of methanol as solvent in the asymmetric unit. The N—C—C—N torsion angle in the cation indicates a cis conformation. The cations are located parallel to the (02) plane and are connected through hydrogen bonds by a methanol solvent molecule and a chloride anion, forming zigzag chains in the direction of the b axis. The crystal structure of 2‐{1‐[(4‐fluoroanilino)methylidene]ethyl}pyridinium chloride, C13H13FN3+·Cl, (II), contains just one anion and one cation in the asymmetric unit but no solvent. In contrast with (I), the N—C—C—N torsion angle in the cation corresponds with a trans conformation. The cations are located parallel to the (100) plane and are connected by hydrogen bonds to the chloride anions, forming zigzag chains in the direction of the b axis. In addition, the crystal packing is stabilized by weak π–π interactions between the pyridinium and benzene rings. The crystal of (II) is a nonmerohedral monoclinic twin which emulates an orthorhombic diffraction pattern. Twinning occurs via a twofold rotation about the c axis and the fractional contribution of the minor twin component refined to 0.324 (3). 2‐{1‐[(4‐Fluoroanilino)methylidene]ethyl}pyridinium chloride methanol disolvate, C13H13FN3+·Cl·2CH3OH, (III), is a pseudopolymorph of (II). It crystallizes with two anions, two cations and four molecules of methanol in the asymmetric unit. Two symmetry‐equivalent cations are connected by hydrogen bonds to a chloride anion and a methanol solvent molecule, forming a centrosymmetric dimer. A further methanol molecule is hydrogen bonded to each chloride anion. These aggregates are connected by C—H...O contacts to form infinite chains. It is remarkable that the geometric structures of two compounds having two different formula units in their asymmetric units are essentially the same.  相似文献   

16.
We have obtained quantitative information about the hydrogen bond strength in pure water and in dilute aqueous solutions of methanol by analyzing the temperature dependence of Raman spectra of the decoupled OD stretch from 21 to 160 degrees C with the hydrogen bond energy dispersion method. A minimum at 2440 cm(-1) assigned to strong icelike hydrogen bonds and a maximum at 2650 cm(-1) due to maximally (but not completely) broken hydrogen bonds result in all cases. The energy of the minimum decreases upon addition of methanol due to formation of stronger water-methanol hydrogen bonds, whereas the energy of the maximum increases because water hydrogen atoms in the vicinity of the methyl group might participate in "more broken" hydrogen bonds than in bulk water.  相似文献   

17.
The role of hydrogen bonding on the microscopic properties of supercooled methanol has been analyzed by means of molecular dynamics simulations. Thermodynamic, structural, and dynamical properties have been investigated in supercooled methanol. The results have been compared with those of an ideal methanol-like system whose molecules have the same dipole moment as the methanol but lack sites for hydrogen bonding. Upon cooling the methanol samples, translational relaxation times increase more rapidly than reorientational ones. This effect is much more important when hydrogen bonds are suppressed. Suppression of hydrogen bonds also results in lower critical temperatures for diffusion and for several characteristic relaxation time constants. The anisotropy of individual dynamics and the existence of dynamical heterogeneities have also been investigated.  相似文献   

18.
29Si NMR, small-angle X-ray scattering (SAXS), and dynamic light scattering (DLS) are used to monitor the synthesis of silica nanoparticles from the base-catalyzed hydrolysis of TEOS in methanol and ethanol. The reactions are conducted at a [TEOS] =0.5 M, low concentrations of ammonia ([NH(3)] =0.01-0.1 M), and [H(2)O] =1.1-4.4 M to resolve the initial size of the first nuclei and to follow their structural evolution. It is found that after an induction period where there is a buildup of singly hydrolyzed monomer, the first nuclei are fractal and open in structure. Interestingly, the nuclei are twice as large in ethanol (R(g) approximately 8 nm) as those in methanol (R(g) approximately 4 nm). The data suggest that the difference in primary particle size is possibly caused by a higher supersaturation ratio of the singly hydrolyzed monomer in methanol than in ethanol if it is assumed that the surface energy of the first nuclei is the same in methanol and ethanol. The particle number concentration and the volume fraction of the silica particles are calculated independently from the SAXS, DLS, and 29Si NMR results. Finally, the rate of nucleation is obtained from the particle number concentrations.  相似文献   

19.
The thermodynamics of hydrogen bond breaking and formation was studied in solutions of alcohol (methanol, ethanol, 1-propanol) molecules. An extensive series of over 400 molecular dynamics simulations with an aggregate length of over 900 ns was analyzed using an analysis technique in which hydrogen bond (HB) breaking is interpreted as an Eyring process, for which the Gibbs energy of activation DeltaG can be determined from the HB lifetime. By performing simulations at different temperatures, we were able to determine the enthalpy of activation DeltaH and the entropy of activation TDeltaS for this process from the Van't Hoff relation. The equilibrium thermodynamics was determined separately, based on the number of donor hydrogens that are involved in hydrogen bonds. Results (DeltaH) are compared to experimental data from Raman spectroscopy and found to be in good agreement for pure water and methanol. The DeltaG as well as the DeltaG are smooth functions of the composition of the mixtures. The main result of the calculations is that DeltaG is essentially independent of the environment (around 5 kJ/mol), suggesting that buried hydrogen bonds (e.g., in proteins) do not contribute significantly to protein stability. Enthalpically HB formation is a downhill process in all substances; however, for the alcohols there is an entropic barrier of 6-7 kJ/mol, at 298.15 K, which cannot be detected in pure water.  相似文献   

20.
An ab initio quantum mechanical charge field molecular dynamics simulation was carried out for one methanol molecule in water to analyze the structure and dynamics of hydrophobic and hydrophilic groups. It is found that water molecules around the methyl group form a cage-like structure whereas the hydroxyl group acts as both hydrogen bond donor and acceptor, thus forming several hydrogen bonds with water molecules. The dynamic analyses correlate well with the structural data, evaluated by means of radial distribution functions, angular distribution functions, and coordination number distributions. The overall ligand mean residence time, τ identifies the methanol molecule as structure maker. The relative dynamics data of hydrogen bonds between hydroxyl of methanol and water molecules prove the existence of both strong and weak hydrogen bonds. The results obtained from the simulation are in excellent agreement with the experimental results for dilute solution of CH(3)OH in water. The overall hydration shell of methanol consists in average of 18 water molecules out of which three are hydrogen bonded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号