首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Let A be a group isomorphic with either S 4, the symmetric group on four symbols, or D 8, the dihedral group of order 8. Let V be a normal four-subgroup of A and ?? an involution in ${A\setminus V}$ . Suppose that A acts on a finite group G in such a manner that C G (V)?=?1 and C G (??) has exponent e. We show that if ${A\cong S_4}$ then the exponent of G is e-bounded and if ${A\cong D_8}$ then the exponent of the derived group G?? is e-bounded. This work was motivated by recent results on the exponent of a finite group admitting an action by a Frobenius group of automorphisms.  相似文献   

2.
 Assume that G is a 3-colourable connected graph with e(G) = 2v(G) −k, where k≥ 4. It has been shown that s 3(G) ≥ 2 k −3, where s r (G) = P(G,r)/r! for any positive integer r and P(G, λ) is the chromatic polynomial of G. In this paper, we prove that if G is 2-connected and s 3(G) < 2 k −2, then G contains at most v(G) −k triangles; and the upper bound is attained only if G is a graph obtained by replacing each edge in the k-cycle C k by a 2-tree. By using this result, we settle the problem of determining if W(n, s) is χ-unique, where W(n, s) is the graph obtained from the wheel W n by deleting all but s consecutive spokes. Received: January 29, 1999 Final version received: April 8, 2000  相似文献   

3.
We prove that every subgroup of finite index in a (topologically) finitely generated profinite group is open. This implies that the topology in such a group is uniquely determined by the group structure. The result follows from a ‘uniformity theorem’ about finite groups: given a group word w that defines a locally finite variety and a natural number d, there exists f=fw(d) such that in every finite d-generator group G, each element of the verbal subgroup w(G) is a product of fw-values. Similar methods show that in a finite d-generator group, each element of the derived group is a product of g(d) commutators; this implies that the (abstract) derived group in any finitely generated profinite group is closed. To cite this article: N. Nikolov, D. Segal, C. R. Acad. Sci. Paris, Ser. I 337 (2003).  相似文献   

4.
Let G=(V(G),E(G)) be a simple graph. Given non-negative integers r,s, and t, an [r,s,t]-coloring of G is a mapping c from V(G)∪E(G) to the color set {0,1,…,k?1} such that |c(v i )?c(v j )|≥r for every two adjacent vertices v i ,v j , |c(e i )?c(e j )|≥s for every two adjacent edges e i ,e j , and |c(v i )?c(e j )|≥t for all pairs of incident vertices and edges, respectively. The [r,s,t]-chromatic number χ r,s,t (G) of G is defined to be the minimum k such that G admits an [r,s,t]-coloring. We determine χ r,s,t (K n,n ) in all cases.  相似文献   

5.
We consider profinite groups in which all commutators are contained in a union of finitely many procyclic subgroups. It is shown that if G is a profinite group in which all commutators are covered by m procyclic subgroups, then G possesses a finite characteristic subgroup M contained in G′ such that the order of M is m-bounded and G′/M is procyclic. If G is a pro-p group such that all commutators in G are covered by m procyclic subgroups, then G′ is either finite of m-bounded order or procyclic.  相似文献   

6.
Let A be an elementary abelian group of order p k with k ≥ 3 acting on a finite p′-group G. The following results are proved. If γ k-2(C G (a)) is nilpotent of class at most c for any ${a \in A^{\#}}$ , then γ k-2(G) is nilpotent and has {c, k, p}-bounded nilpotency class. If, for some integer d such that 2 d  + 2 ≤ k, the dth derived group of C G (a) is nilpotent of class at most c for any ${a \in A^{\#}}$ , then the dth derived group G (d) is nilpotent and has {c, k, p}-bounded nilpotency class.  相似文献   

7.
Let e be a positive integer and G a finite group acted on by the four-group V in such a manner that C G (V) = 1. Suppose that V contains an element v such that the centralizer C G (v) has exponent e. Then the exponent of G″, the second derived group of G, is bounded in terms of e only.  相似文献   

8.
For a finite non cyclic group G, let γ(G) be the smallest integer k such that G contains k proper subgroups H 1, . . . , H k with the property that every element of G is contained in \({H_i^g}\) for some \({i \in \{1,\dots,k\}}\) and \({g \in G.}\) We prove that for every n ≥ 2, there exists a finite solvable group G with γ(G) = n.  相似文献   

9.
Emil Artin studied quadratic extensions of k(x) where k is a prime field of odd characteristic. He showed that there are only finitely many such extensions in which the ideal class group has exponent two and the infinite prime does not decompose. The main result of this paper is: If K is a quadratic imaginary extension of k(x) of genus G, where k is a finite field of order q, in which the infinite prime of k(x) ramifies, and if the ideal class group has exponent 2, then q = 9, 7, 5, 4, 3, or 2 and G ≤ 1, 1, 2, 2, 4, and 8, respectively. The method of Artin's proof gives G ≤ 13, 9, and 9724 for q = 7, 5, and 3, respectively. If the infinite prime is inert in K, both the methods of this paper and Artin's methods give bounds on the genus that are roughly double those in the ramified case.  相似文献   

10.
A secure dominating set X of a graph G is a dominating set with the property that each vertex uVGX is adjacent to a vertex vX such that (X−{v})∪{u} is dominating. The minimum cardinality of such a set is called the secure domination number, denoted by γs(G). We are interested in the effect of edge removal on γs(G), and characterize γs-ER-critical graphs, i.e. graphs for which γs(Ge)>γs(G) for any edge e of G, bipartite γs-ER-critical graphs and γs-ER-critical trees.  相似文献   

11.
Let G be a finitely presented group given by its pre-abelian presentation <X1,…,Xm; Xe11ζ1,…,Xemmζ,ζm+1,…>, where ei≥0 for i = 1,…, m and ζj?G′ for j≥1. Let N be the subgroup of G generated by the normal subgroups [xeii, G] for i = 1,…, m. Then Dn+2(G)≡γn+2(G) (modNG′) for all n≥0, where G” is the second commutator subgroup of Gn+2(G) is the (n+2)th term of the lower central series of G and Dn+2(G) = G∩(1+△n+2(G)) is the (n+2)th dimension subgroup of G.  相似文献   

12.
For positive integers s and k1,k2,…,ks, the van der Waerden number w(k1,k2,…,ks;s) is the minimum integer n such that for every s-coloring of set {1,2,…,n}, with colors 1,2,…,s, there is a ki-term arithmetic progression of color i for some i. We give an asymptotic lower bound for w(k,m;2) for fixed m. We include a table of values of w(k,3;2) that are very close to this lower bound for m=3. We also give a lower bound for w(k,k,…,k;s) that slightly improves previously-known bounds. Upper bounds for w(k,4;2) and w(4,4,…,4;s) are also provided.  相似文献   

13.
A subset S={s1,…,sk} of an Abelian group G is called an St-set of size k if all sums of t different elements in S are distinct. Let s(G) denote the cardinality of the largest S2-set in G. Let v(k) denote the order of the smallest Abelian group for which s(G)?k. In this article, bounds for s(G) are developed and v(k) is determined for k?15 by computing s(G) for Abelian groups of order up to 183 using exhaustive backtrack search with isomorph rejection.  相似文献   

14.
In this noteG is a locally compact group which is the product of finitely many groups Gs(ks)(s∈S), where ks is a local field of characteristic zero and Gs an absolutely almost simplek s-group, ofk s-rank ≥1. We assume that the sum of the rs is ≥2 and fix a Haar measure onG. Then, given a constantc > 0, it is shown that, up to conjugacy,G contains only finitely many irreducible discrete subgroupsL of covolume ≥c (4.2). This generalizes a theorem of H C Wang for real groups. His argument extends to the present case, once it is shown thatL is finitely presented (2.4) and locally rigid (3.2).  相似文献   

15.
A set of vertices S is said to dominate the graph G if for each v ? S, there is a vertex uS with u adjacent to v. The smallest cardinality of any such dominating set is called the domination number of G and is denoted by γ(G). The purpose of this paper is to initiate an investigation of those graphs which are critical in the following sense: For each v, uV(G) with v not adjacent to u, γ(G + vu) < γ(G). Thus G is k-y-critical if γ(G) = k and for each edge e ? E(G), γ(G + e) = k ?1. The 2-domination critical graphs are characterized the properties of the k-critical graphs with k ≥ 3 are studied. In particular, the connected 3-critical graphs of even order are shown to have a 1-factor and some stringent restrictions on their degree sequences and diameters are obtained.  相似文献   

16.
Let G be a finite group and π e (G) be the set of element orders of G. Let k ∈ π e (G) and m k be the number of elements of order k in G. Set nse(G):= {m k : k ∈ π e (G)}. In fact nse(G) is the set of sizes of elements with the same order in G. In this paper, by nse(G) and order, we give a new characterization of finite projective special linear groups L 2(p) over a field with p elements, where p is prime. We prove the following theorem: If G is a group such that |G| = |L 2(p)| and nse(G) consists of 1, p 2 ? 1, p(p + ?)/2 and some numbers divisible by 2p, where p is a prime greater than 3 with p ≡ 1 modulo 4, then G ? L 2(p).  相似文献   

17.
Let G be an amenable group, let X be a Banach space and let π:GB(X) be a bounded representation. We show that if the set is γ-bounded then π extends to a bounded homomorphism w:C(G)→B(X) on the group C-algebra of G. Moreover w is necessarily γ-bounded. This extends to the Banach space setting a theorem of Day and Dixmier saying that any bounded representation of an amenable group on Hilbert space is unitarizable. We obtain additional results and complements when G=Z, R or T, and/or when X has property (α).  相似文献   

18.
The problem of constructing a maximal t-linearly independent set in V(r; s) (called a maximal Lt(r, s)-set in this paper) is a very important one (called a packing problem) concerning a fractional factorial design and an error correcting code where V(r; s) is an r-dimensional vector space over a Galois field GF(s) and s is a prime or a prime power. But it is very difficult to solve it and attempts made by several research workers have been successful only in special cases.In this paper, we introduce the concept of a {Σα=1kwα, m; t, s}-min · hyper with weight (w1, w2,…, wk) and using this concept and the structure of a finite projective geometry PG(n ? 1, s), we shall give a geometrical method of constructing a maximal Lt(t + r, s)-set with length t + r + n for any integers r, n, and s such that n ? 3, n ? 1 ? r0 ? n + s ? 2 and r1 ? 1, where r = (r1 + 1)vn?1 ? r0 and vn = (sn ? 1)(s ? 1).  相似文献   

19.
The stable Kneser graph SGn,k, n?1, k?0, introduced by Schrijver (1978) [19], is a vertex critical graph with chromatic number k+2, its vertices are certain subsets of a set of cardinality m=2n+k. Björner and de Longueville (2003) [5] have shown that its box complex is homotopy equivalent to a sphere, Hom(K2,SGn,k)?Sk. The dihedral group D2m acts canonically on SGn,k, the group C2 with 2 elements acts on K2. We almost determine the (C2×D2m)-homotopy type of Hom(K2,SGn,k) and use this to prove the following results.The graphs SG2s,4 are homotopy test graphs, i.e. for every graph H and r?0 such that Hom(SG2s,4,H) is (r−1)-connected, the chromatic number χ(H) is at least r+6.If k∉{0,1,2,4,8} and n?N(k) then SGn,k is not a homotopy test graph, i.e. there are a graph G and an r?1 such that Hom(SGn,k,G) is (r−1)-connected and χ(G)<r+k+2.  相似文献   

20.
For k?0, ?k(G) denotes the Lick-White vertex partition number of G. A graph G is called (n, k)-critical if it is connected and for each edge e of G?k(G–e)<?k(G)=n. We describe all (2, k)-critical graphs and for n?3,k?1 we extend and simplify a result of Bollobás and Harary giving one construction of a family of (n, k)-critical graphs of every possible order.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号