首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Quantum error correcting codes (QECCs) play an important role in preventing quantum information decoherence. Good quantum stabilizer codes were constructed by classical error correcting codes. In this paper, Bose–Chaudhuri–Hocquenghem (BCH) codes over finite fields are used to construct quantum codes. First, we try to find such classical BCH codes, which contain their dual codes, by studying the suitable cyclotomic cosets. Then, we construct nonbinary quantum BCH codes with given parameter sets. Finally, a new family of quantum BCH codes can be realized by Steane’s enlargement of nonbinary Calderbank-Shor-Steane (CSS) construction and Hermitian construction. We have proven that the cyclotomic cosets are good tools to study quantum BCH codes. The defining sets contain the highest numbers of consecutive integers. Compared with the results in the references, the new quantum BCH codes have better code parameters without restrictions and better lower bounds on minimum distances. What is more, the new quantum codes can be constructed over any finite fields, which enlarges the range of quantum BCH codes.  相似文献   

2.
In this review article, we review the recent development of quantum secure direct communication (QSDC) and deterministic secure quantum communication (DSQC) which both are used to transmit secret message, including the criteria for QSDC, some interesting QSDC protocols, the DSQC protocols and QSDC network, etc. The difference between these two branches of quantum communication is that DSQC requires the two parties exchange at least one bit of classical information for reading out the message in each qubit, and QSDC does not. They are attractive because they are deterministic, in particular, the QSDC protocol is fully quantum mechanical. With sophisticated quantum technology in the future, the QSDC may become more and more popular. For ensuring the safety of QSDC with single photons and quantum information sharing of single qubit in a noisy channel, a quantum privacy amplification protocol has been proposed. It involves very simple CHC operations and reduces the information leakage to a negligible small level. Moreover, with the one-party quantum error correction, a relation has been established between classical linear codes and quantum one-party codes, hence it is convenient to transfer many good classical error correction codes to the quantum world. The one-party quantum error correction codes are especially designed for quantum dense coding and related QSDC protocols based on dense coding.   相似文献   

3.
对于量子卷积码理论的研究旨在保护长距离通信中的量子信息序列. 定义了量子态的多项式表示形式,根据Calderbank-Shor-Steane(CSS)型量子码的构造方法,给出了CSS型量子卷积码的一种新的编译码方法,描述了编译码网络. 该方法将码字基态变换为信息多项式与生成多项式的乘积,然后用量子态上的多项式乘法操作实现编译码网络. 最后借鉴经典卷积码的译码思想,给出了具有线性复杂度的量子Viterbi算法. 关键词: 量子信息 量子卷积码 编译码 纠错算法  相似文献   

4.
A measure of quality of an error-correcting code is the maximum number of errors that it is able to correct. We show that a suitable notion of "number of errors" e makes sense for any quantum or classical system in the presence of arbitrary interactions. Thus, e-error-correcting codes protect information without requiring the usual assumptions of independence. We prove the existence of large codes for both quantum and classical information. By viewing error-correcting codes as subsystems, we relate codes to irreducible representations of operator algebras and show that noiseless subsystems are infinite-distance error-correcting codes.  相似文献   

5.
We analyze a new scheme for quantum information processing, with superconducting charge qubits coupled through a cavity mode, in which quantum manipulations are insensitive to the state of the cavity. We illustrate how to physically implement universal quantum computation as well as multiqubit entanglement based on unconventional geometric phase shifts in this scalable solid-state system. Some quantum error-correcting codes can also be easily constructed using the same technique. In view of the gate dependence on just global geometric features and the insensitivity to the state of cavity modes, the proposed quantum operations may result in high-fidelity quantum information processing.  相似文献   

6.
李卓  邢莉娟 《物理学报》2013,62(13):130306-130306
本文找到了一种研究优质差错基和量子纠错码的新方法,即群代数方法, 它为差错基和量子码提供了一种代数表示. 利用这种代数表示, 建立了一系列关于最一般量子纠错码的线性规划限. 关键词: 群代数 差错基 量子纠错码 量子信息  相似文献   

7.
Quantum maximal-distance-separable (MDS) codes that satisfy quantum Singleton bound with different lengths have been constructed by some researchers. In this paper, seven families of asymmetric quantum MDS codes are constructed by using constacyclic codes. We weaken the case of Hermitian-dual containing codes that can be applied to construct asymmetric quantum MDS codes with parameters \([[n,k,d_{z}/d_{x}]]_{q^{2}}\). These quantum codes are able to correct quantum errors with greater asymmetry. Moreover, these quantum codes constructed in this paper are different from the ones in the literature.  相似文献   

8.
A general framework describing the statistical discrimination of an ensemble of quantum channels is given by the name quantum reading. Several tools can be applied in quantum reading to reduce the error probability in distinguishing the ensemble of channels. Classical and quantum codes can be envisioned for this goal. The aim of this paper is to present a simple but fruitful protocol for this task using classical error-correcting codes. Three families of codes are considered: Reed–Solomon codes, BCH codes, and Reed–Muller codes. In conjunction with the use of codes, we also analyze the role of the receiver. In particular, heterodyne and Dolinar receivers are taken into consideration. The encoding and measurement schemes are connected by the probing step. As probes, we consider coherent states. In such a simple manner, interesting results are obtained. As we show, there is a threshold below which using codes surpass optimal and sophisticated schemes for any fixed rate and code. BCH codes in conjunction with Dolinar receiver turn out to be the optimal strategy for error mitigation in quantum reading.  相似文献   

9.
李卓  邢莉娟 《物理学报》2007,56(10):5602-5606
借助经典级联码的思想,详细阐述了通过适当选择量子码作为外码和内码,构造一般意义量子级联码的过程.在此基础上,通过选择量子RS码作为外码,一组特殊结构的量子码作为内码,具体构造出了一类量子级联码,证明了其是量子好码.在量子纠错码领域中,这是首次利用经典坏码构造出量子好码.  相似文献   

10.
We determine the optimal rates of universal quantum codes for entanglement transmission and generation under channel uncertainty. In the simplest scenario the sender and receiver are provided merely with the information that the channel they use belongs to a given set of channels, so that they are forced to use quantum codes that are reliable for the whole set of channels. This is precisely the quantum analog of the compound channel coding problem. We determine the entanglement transmission and entanglement-generating capacities of compound quantum channels and show that they are equal. Moreover, we investigate two variants of that basic scenario, namely the cases of informed decoder or informed encoder, and derive corresponding capacity results.  相似文献   

11.
Two possible applications of random decoupling are discussed. Whereas so far decoupling methods have been considered merely for quantum memories, here it is demonstrated that random decoupling is also a convenient tool for stabilizing quantum algorithms. Furthermore, a decoupling scheme is presented which involves a random decoupling method compatible with detected-jump error correcting quantum codes. With this combined error correcting strategy it is possible to stabilize quantum information against both spontaneous decay and static imperfections of a qubit-based quantum information processor in an efficient way.  相似文献   

12.
Because of its directness and simplicity, using graph is a worthy researching approach to construct quantum error correction codes. Nested graphical quantum code is a special class of stabilizer codes. In this letter, by making uses of the entanglement of several subgraphs, we proposed a novel construction method of generator matrices of graphical quantum nested codes, and families of corresponding nested graphical quantum codes.  相似文献   

13.
Operator quantum error correction is a recently developed theory that provides a generalized and unified framework for active error correction and passive error avoiding schemes. In this Letter, we describe these codes using the stabilizer formalism. This is achieved by adding a gauge group to stabilizer codes that defines an equivalence class between encoded states. Gauge transformations leave the encoded information unchanged; their effect is absorbed by virtual gauge qubits that do not carry useful information. We illustrate the construction by identifying a gauge symmetry in Shor's 9-qubit code that allows us to remove 3 of its 8 stabilizer generators, leading to a simpler decoding procedure and a wider class of logical operations without affecting its essential properties. This opens the path to possible improvements of the error threshold of fault-tolerant quantum computing.  相似文献   

14.
International Journal of Theoretical Physics - Entanglement-assisted quantum maximum distance separable (MDS) codes form a significant class of quantum codes. By using constacyclic codes, we...  相似文献   

15.
Quantum degenerate code may improve the hashing bound of quantum capacity. We propose a family of quantum degenerate codes derived from two-colorable graphs. The coherent information of the codes is analytically obtained as a function of the channel noise for the depolarizing channel. We find a new code which has a higher noise threshold than that of the repetition code.  相似文献   

16.
A general protocol for constructing a complete efficient encoding and decoding quantum circuit of the [[8,3,5]] stabilizer code is proposed. The [[8,3,5]] stabilizer code is an eight-qubit code that protects a three-qubit state with up to one error, which is very important for quantum information processing. Single-qubit operations, two-qubit controlled gates and Toffoli gates are required in the proposed circuit. The current protocol can be generalized to all quantum stabilizer codes satisfying quantum Hamming bound, and implemented in some quantum systems.  相似文献   

17.

Classical Bose-Chaudhuri-Hocquenghem (BCH) codes over finite fields have been studied extensively. The Calderbank-Shor-Steane (CSS) construction, especially Steane’s enlargement, and Hermitian construction are the most widely used methods in design of quantum codes. The BCH codes containing their Euclidean dual or Hermitian dual codes can be used to generate good stabilizer codes. Therefore, we can construct quantum codes by classical BCH codes over finite fields in this paper. Firstly, we study the properties of such classical BCH codes in terms of the cyclotomic cosets. It is convenient to compute the dimension of new quantum BCH codes. Meanwhile, it ensures that classical BCH codes are Euclidean dual-containing or Hermitian dual-containing. These results about suitable cyclotomic cosets make it possible to construct several new families of nonbinary quantum BCH codes with a given parameter set. Compared with the ones available in the literature, the quantum BCH codes in our schemes have good parameters. In particular, we extend to more general cases than known results.

  相似文献   

18.
We investigate the undetermined sets consisting of two-level, multi-partite pure quantum states, whose reduced density matrices give absolutely no information of their original states. Two approached of finding these quantum states are proposed. One is to establish the relation between codewords of the stabilizer quantum error correction codes (SQECCs) and the undetermined states. The other is to study the local complementation rules of the graph states. As an application, the undetermined states can be exploited in the quantum secret sharing scheme. The security is guaranteed by their undetermineness.  相似文献   

19.
When the time variable in quantum signal processing is discrete, the Fourier transform exists on the vector space of n-tuples over the Galois field F2, which plays an important role in the investigation of quantum signals. By using Fourier transforms, the idea of quantum coding theory can be described in a setting that is much different from that seen that far. Quantum BCH codes can be defined as codes whose quantum states have certain specified consecutive spectral components equal to zero and the error-correcting ability is also described by the number of the consecutive zeros. Moreover, the decoding of quantum codes can be described spectrally with more efficiency.  相似文献   

20.
Recently, La Guardia constructed some new quantum codes from cyclic codes (La Guardia, Int. J. Theor. Phys., 2017). Inspired by this work, we consider quantum codes construction from negacyclic codes, not equivalent to cyclic codes, with only one cyclotomic coset containing at least two odd consecutive integers of even length. Some new quantum codes are obtained by this class of negacyclic codes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号