首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The binding energies of the systems ${{\phi n n}}$ , ${{\phi n p}}$ , and ${{\phi p p}}$ are calculated on the basis of Faddeev equations. The results indicate the possibility of new few-nucleon meson clusters.  相似文献   

2.
The Schrödinger  equation for a particle of rest mass $m$ and electrical charge $ne$ interacting with a four-vector potential $A_i$ can be derived as the non-relativistic limit of the Klein–Gordon  equation $\left( \Box '+m^2\right) \varPsi =0$ for the wave function $\varPsi $ , where $\Box '=\eta ^{jk}\partial '_j\partial '_k$ and $\partial '_j=\partial _j -\mathrm {i}n e A_j$ , or equivalently from the one-dimensional  action $S_1=-\int m ds +\int neA_i dx^i$ for the corresponding point particle in the semi-classical approximation $\varPsi \sim \exp {(\mathrm {i}S_1)}$ , both methods yielding the equation $\mathrm {i}\partial _0\varPsi \approx \left( \frac{1}{2m}\eta ^{\alpha \beta }\partial '_{\alpha }\partial '_{\beta } + m + n e\phi \right) \varPsi $ in Minkowski  space–time  , where $\alpha ,\beta =1,2,3$ and $\phi =-A_0$ . We show that these two methods generally yield equations  that differ in a curved background  space–time   $g_{ij}$ , although they coincide when $g_{0\alpha }=0$ if $m$ is replaced by the effective mass $\mathcal{M}\equiv \sqrt{m^2-\xi R}$ in both the Klein–Gordon  action $S$ and $S_1$ , allowing for non-minimal coupling to the gravitational  field, where $R$ is the Ricci scalar and $\xi $ is a constant. In this case $\mathrm {i}\partial _0\varPsi \approx \left( \frac{1}{2\mathcal{M}'} g^{\alpha \beta }\partial '_{\alpha }\partial '_{\beta } + \mathcal{M}\phi ^{(\mathrm g)} + n e\phi \right) \varPsi $ , where $\phi ^{(\mathrm g)} =\sqrt{g_{00}}$ and $\mathcal{M}'=\mathcal{M}/\phi ^{(\mathrm g)} $ , the correctness of the gravitational  contribution to the potential having been verified to linear order $m\phi ^{(\mathrm g)} $ in the thermal-neutron beam interferometry experiment due to Colella et al. Setting $n=2$ and regarding $\varPsi $ as the quasi-particle wave function, or order parameter, we obtain the generalization of the fundamental macroscopic Ginzburg-Landau equation of superconductivity to curved space–time. Conservation of probability and electrical current requires both electromagnetic gauge and space–time  coordinate conditions to be imposed, which exemplifies the gravito-electromagnetic analogy, particularly in the stationary case, when div ${{\varvec{A}}}=\hbox {div}{{\varvec{A}}}^{(\mathrm g)}=0$ , where ${{\varvec{A}}}^{\alpha }=-A^{\alpha }$ and ${{\varvec{A}}}^{(\mathrm g)\alpha }=-\phi ^{(\mathrm g)}g^{0\alpha }$ . The quantum-cosmological Schrödinger  (Wheeler–DeWitt) equation is also discussed in the $\mathcal{D}$ -dimensional  mini-superspace idealization, with particular regard to the vacuum potential $\mathcal V$ and the characteristics of the ground state, assuming a gravitational  Lagrangian   $L_\mathcal{D}$ which contains higher-derivative  terms up to order $\mathcal{R}^4$ . For the heterotic superstring theory  , $L_\mathcal{D}$ consists of an infinite series in $\alpha '\mathcal{R}$ , where $\alpha '$ is the Regge slope parameter, and in the perturbative approximation $\alpha '|\mathcal{R}| \ll 1$ , $\mathcal V$ is positive semi-definite for $\mathcal{D} \ge 4$ . The maximally symmetric ground state satisfying the field equations is Minkowski  space for $3\le {\mathcal {D}}\le 7$ and anti-de Sitter  space for $8 \le \mathcal {D} \le 10$ .  相似文献   

3.
This paper is concerned with d = 2 dimensional lattice field models with action ${V(\nabla\phi(\cdot))}$ , where ${V : \mathbf{R}^d \rightarrow \mathbf{R}}$ is a uniformly convex function. The fluctuations of the variable ${\phi(0) - \phi(x)}$ are studied for large |x| via the generating function given by ${g(x, \mu) = \ln \langle e^{\mu(\phi(0) - \phi(x))}\rangle_{A}}$ . In two dimensions ${g'' (x, \mu) = \partial^2g(x, \mu)/\partial\mu^2}$ is proportional to ${\ln\vert x\vert}$ . The main result of this paper is a bound on ${g''' (x, \mu) = \partial^3 g(x, \mu)/\partial \mu^3}$ which is uniform in ${\vert x \vert}$ for a class of convex V. The proof uses integration by parts following Helffer–Sjöstrand and Witten, and relies on estimates of singular integral operators on weighted Hilbert spaces.  相似文献   

4.
Warm inflation model with bulk viscous pressure in the context of “intermediate inflation” where the cosmological scale factor expands as $a(t)=a_0\exp (At^f)$ , is studied. The characteristics of this model in slow-roll approximation and in high dissipative regime are presented in two cases: 1—Dissipative parameter $\Gamma $ as a function of scalar field $\phi $ and bulk viscous coefficient $\zeta $ as a function of energy density $\rho $ . 2— $\Gamma $ and $\zeta $ are constant parameters. Scalar, tensor perturbations and spectral indices for this scenario are obtained. The cosmological parameters appearing in the present model are constrained by recent observational data (WMAP7).  相似文献   

5.
We consider the problem of existence of asymptotic observables in local relativistic theories of massive particles. Let ${\tilde{p}_1}$ and ${\tilde{p}_2}$ be two energy-momentum vectors of a massive particle and let ${\Delta}$ be a small neighbourhood of ${\tilde{p}_1 + \tilde{p}_2}$ . We construct asymptotic observables (two-particle Araki–Haag detectors), sensitive to neutral particles of energy-momenta in small neighbourhoods of ${\tilde{p}_1}$ and ${\tilde{p}_2}$ . We show that these asymptotic observables exist, as strong limits of their approximating sequences, on all physical states from the spectral subspace of ${\Delta}$ . Moreover, the linear span of the ranges of all such asymptotic observables coincides with the subspace of two-particle Haag–Ruelle scattering states with total energy-momenta in ${\Delta}$ . The result holds under very general conditions which are satisfied, for example, in ${\lambda{\phi}_{2}^{4}}$ . The proof of convergence relies on a variant of the phase-space propagation estimate of Graf.  相似文献   

6.
In this article, we study the ${3\over 2}^{+}$ heavy and doubly heavy baryon states $\varXi^{*}_{cc}$ , $\varOmega^{*}_{cc}$ , $\varXi^{*}_{bb}$ , $\varOmega^{*}_{bb}$ , $\varSigma_{c}^{*}$ , $\varXi_{c}^{*}$ , $\varOmega_{c}^{*}$ , $\varSigma_{b}^{*}$ , $\varXi_{b}^{*}$ and $\varOmega_{b}^{*}$ by subtracting the contributions from the corresponding ${3\over 2}^{-}$ heavy and doubly heavy baryon states with the QCD sum rules, and we make reasonable predictions for their masses.  相似文献   

7.
Charmonium rescattering effects in the M1 transition of $ \psi$ (2S) $ \rightarrow$ $ \gamma$ $ \eta_{c}^{}$ are investigated by modeling a $ \chi_{{cJ}}^{}$ or J/ $ \psi$ rescattering into a $ \eta_{c}^{}$ final state. The absorptive and dispersive part of the transition amplitudes for the rescattering loops of $ \eta$ $ \psi$ ( $ \gamma^{{\ast}}_{}$ ) and $ \gamma$ $ \chi$ ( $ \psi$ ) are separately evaluated. The numerical results show that the contribution from the $ \gamma$ $ \chi$ ( $ \psi$ ) rescattering process is negligible. Compared with the virtual D $ \bar{{D}}$ (D *) rescattering processes, the $ \eta$ $ \psi$ ( $ \gamma^{{\ast}}_{}$ ) process may be regarded as the next-leading order of the hadronic loop mechanism, which only offers the partial decay width of ~ 0.045 keV to the $ \psi$ (2S) $ \rightarrow$ $ \gamma$ $ \eta_{c}^{}$ .  相似文献   

8.
We consider a version of directed bond percolation on the triangular lattice such that vertical edges are directed upward with probability $y$ , diagonal edges are directed from lower-left to upper-right or lower-right to upper-left with probability $d$ , and horizontal edges are directed rightward with probabilities $x$ and one in alternate rows. Let $\tau (M,N)$ be the probability that there is at least one connected-directed path of occupied edges from $(0,0)$ to $(M,N)$ . For each $x \in [0,1]$ , $y \in [0,1)$ , $d \in [0,1)$ but $(1-y)(1-d) \ne 1$ and aspect ratio $\alpha =M/N$ fixed for the triangular lattice with diagonal edges from lower-left to upper-right, we show that there is an $\alpha _c = (d-y-dy)/[2(d+y-dy)] + [1-(1-d)^2(1-y)^2x]/[2(d+y-dy)^2]$ such that as $N \rightarrow \infty $ , $\tau (M,N)$ is $1$ , $0$ and $1/2$ for $\alpha > \alpha _c$ , $\alpha < \alpha _c$ and $\alpha =\alpha _c$ , respectively. A corresponding result is obtained for the triangular lattice with diagonal edges from lower-right to upper-left. We also investigate the rate of convergence of $\tau (M,N)$ and the asymptotic behavior of $\tau (M_N^-,N)$ and $\tau (M_N^+ ,N)$ where $M_N^-/N\uparrow \alpha _c$ and $M_N^+/N\downarrow \alpha _c$ as $N\uparrow \infty $ .  相似文献   

9.
We study the one-dimensional Schrödinger equation with a disordered potential of the form $$\begin{aligned} V (x) = \phi (x)^2+\phi '(x) + \kappa (x) \end{aligned}$$ where $\phi (x)$ is a Gaussian white noise with mean $\mu g$ and variance $g$ , and $\kappa (x)$ is a random superposition of delta functions distributed uniformly on the real line with mean density $\rho $ and mean strength $v$ . Our study is motivated by the close connection between this problem and classical diffusion in a random environment (the Sinai problem) in the presence of random absorbers: $\phi (x)$ models the force field acting on the diffusing particle and $\kappa (x)$ models the absorption properties of the medium in which the diffusion takes place. The focus is on the calculation of the complex Lyapunov exponent $ \varOmega (E) = \gamma (E) - \mathrm{i}\pi N(E) $ , where $N$ is the integrated density of states per unit length and $\gamma $ the reciprocal of the localisation length. By using the continuous version of the Dyson–Schmidt method, we find an exact formula, in terms of a Hankel function, in the particular case where the strength of the delta functions is exponentially-distributed with mean $v=2g$ . Building on this result, we then solve the general case— in the low-energy limit— in terms of an infinite sum of Hankel functions. Our main result, valid without restrictions on the parameters of the model, is that the integrated density of states exhibits the power law behaviour $$\begin{aligned} N(E) \underset{E\rightarrow 0+}{\sim } E^\nu \quad \hbox {where } \quad \nu =\sqrt{\mu ^2+2\rho /g}. \end{aligned}$$ This confirms and extends several results obtained previously by approximate methods.  相似文献   

10.
A gravitational $D$ -dimensional model with $l$ scalar fields and several forms is considered. When a cosmological-type diagonal metric is chosen, an electromagnetic composite brane ansatz is adopted and certain restrictions on the branes are imposed; the conformally covariant Wheeler–DeWitt (WDW) equation for the model is studied. Under certain restrictions asymptotic solutions to WDW equation are found in the limit of the formation of the billiard walls which reduce the problem to the so-called quantum billiard on the $(D+ l -2)$ -dimensional Lobachevsky space. Two examples of quantum billiards are considered. The first one deals with $9$ -dimensional quantum billiard for $D = 11$ model with $330$ four-forms which mimic space-like $M2$ - and $M5$ -branes of $D=11$ supergravity. The second one deals with the $9$ -dimensional quantum billiard for $D =10$ gravitational model with one scalar field, $210$ four-forms and $120$ three-forms which mimic space-like $D2$ -, $D4$ -, $FS1$ - and $NS5$ -branes in $D = 10$ $II A$ supergravity. It is shown that in both examples wave functions vanish in the limit of the formation of the billiard walls (i.e. we get a quantum resolution of the singularity for $11D$ model) but magnetic branes could not be neglected in calculations of quantum asymptotic solutions while they are irrelevant for classical oscillating behavior when all $120$ electric branes are present.  相似文献   

11.
We review and update our results for $K\rightarrow \pi \pi $ decays and $K^0$ $\bar{K}^0$ mixing obtained by us in the 1980s within an analytic approximate approach based on the dual representation of QCD as a theory of weakly interacting mesons for large $N$ , where $N$ is the number of colors. In our analytic approach the Standard Model dynamics behind the enhancement of $\hbox {Re}A_0$ and suppression of $\hbox {Re}A_2$ , the so-called $\Delta I=1/2$ rule for $K\rightarrow \pi \pi $ decays, has a simple structure: the usual octet enhancement through the long but slow quark–gluon renormalization group evolution down to the scales $\mathcal{O}(1\, {\hbox { GeV}})$ is continued as a short but fast meson evolution down to zero momentum scales at which the factorization of hadronic matrix elements is at work. The inclusion of lowest-lying vector meson contributions in addition to the pseudoscalar ones and of Wilson coefficients in a momentum scheme improves significantly the matching between quark–gluon and meson evolutions. In particular, the anomalous dimension matrix governing the meson evolution exhibits the structure of the known anomalous dimension matrix in the quark–gluon evolution. While this physical picture did not yet emerge from lattice simulations, the recent results on $\hbox {Re}A_2$ and $\hbox {Re}A_0$ from the RBC-UKQCD collaboration give support for its correctness. In particular, the signs of the two main contractions found numerically by these authors follow uniquely from our analytic approach. Though the current–current operators dominate the $\Delta I=1/2$ rule, working with matching scales $\mathcal{O}(1 \, {\hbox { GeV}})$ we find that the presence of QCD-penguin operator $Q_6$ is required to obtain satisfactory result for $\hbox {Re}A_0$ . At NLO in $1/N$ we obtain $R=\hbox {Re}A_0/\hbox {Re}A_2= 16.0\pm 1.5$ which amounts to an order of magnitude enhancement over the strict large $N$ limit value $\sqrt{2}$ . We also update our results for the parameter $\hat{B}_K$ , finding $\hat{B}_K=0.73\pm 0.02$ . The smallness of $1/N$ corrections to the large $N$ value $\hat{B}_K=3/4$ results within our approach from an approximate cancelation between pseudoscalar and vector meson one-loop contributions. We also summarize the status of $\Delta M_K$ in this approach.  相似文献   

12.
In this article, we study the vertexes $ \Xi_{Q}^{*}$ Q V and $ \Sigma_{Q}^{*}$ $ \Sigma_{Q}^{}$ V with the light-cone QCD sum rules, then assume the vector meson dominance of the intermediate $ \phi$ (1020) , $ \rho$ (770) and $ \omega$ (782) , and calculate the radiative decays $ \Xi_{Q}^{*}$ $ \rightarrow$ Q $ \gamma$ and $ \Sigma_{Q}^{*}$ $ \rightarrow$ $ \Sigma_{Q}^{}$ $ \gamma$ .  相似文献   

13.
Cobalt–zinc nanoferrites with formulae Co $_{1-x}$ Zn $_{x}$ Fe $_{2}$ O $_{4}$ , where x = 0.0, 0.1, 0.2 and 0.3, have been synthesized by solution combustion technique. The variation of DC resistivity with temperature shows the semiconducting behavior of all nanoferrites. The dielectric properties such as dielectric constant ( $\varepsilon $ ’) and dielectric loss tangent (tan $\delta )$ are investigated as a function of temperature and frequency. Dielectric constant and loss tangent are found to be increasing with an increase in temperature while with an increase in frequency both, $\varepsilon $ ’ and tan $\delta $ , are found to be decreasing. The dielectric properties have been explained on the basis of space charge polarization according to Maxwell–Wagner’s two-layer model and the hopping of charge between Fe $^{2+}$ and Fe $^{3+}$ . Further, a very high value of dielectric constant and a low value of tan $\delta $ are the prime achievements of the present work. The AC electrical conductivity ( $\sigma _\mathrm{AC})$ is studied as a function of temperature as well as frequency and $\sigma _\mathrm{AC}$ is observed to be increasing with the increase in temperature and frequency.  相似文献   

14.
We build up local, time translation covariant Boundary Quantum Field Theory nets of von Neumann algebras ${\mathcal A_V}$ on the Minkowski half-plane M + starting with a local conformal net ${\mathcal A}$ of von Neumann algebras on ${\mathbb R}$ and an element V of a unitary semigroup ${\mathcal E(\mathcal A)}$ associated with ${\mathcal A}$ . The case V?=?1 reduces to the net ${\mathcal A_+}$ considered by Rehren and one of the authors; if the vacuum character of ${\mathcal A}$ is summable, ${\mathcal A_V}$ is locally isomorphic to ${\mathcal A_+}$ . We discuss the structure of the semigroup ${\mathcal E(\mathcal A)}$ . By using a one-particle version of Borchers theorem and standard subspace analysis, we provide an abstract analog of the Beurling-Lax theorem that allows us to describe, in particular, all unitaries on the one-particle Hilbert space whose second quantization promotion belongs to ${\mathcal E(\mathcal A^{(0)})}$ with ${\mathcal A^{(0)}}$ the U(1)-current net. Each such unitary is attached to a scattering function or, more generally, to a symmetric inner function. We then obtain families of models via any Buchholz-Mack-Todorov extension of ${\mathcal A^{(0)}}$ . A further family of models comes from the Ising model.  相似文献   

15.
We study various $\alpha $ -decay chains on the basis of the preformed cluster decay model. Our work targets the superheavy elements, which are expected to show extra stability at shell closure. Our computations identify the following combinations of proton and neutron numbers as the most stable nuclei: $Z=112$ , $N=161, 163$ ; $Z=114$ , $N=171, 178, 179$ ; and $Z=124$ , $N=194$ . We also investigate the alternative of heavy cluster emissions in the decay chain of 301120, instead of $\alpha $ decay. Our study of cluster radioactivity shows that the half-life for 10Be decay in 289114 is larger, indicating enhanced stability at $Z=114$ , $N=175$ . Similar calculations concerning the emission of $\ ^{14}{\rm C}$ and $\ ^{34}{\rm Si}$ from 301120 find the more stable combinations $Z=114$ , $N=173$ , and $Z=106$ , $N=161$ , respectively. From the same parent, 301120, the emission of a $\ ^{49-51}{\rm Ca}$ cluster yielding a $Z=100$ , $N=152$ daughter is the most probable.  相似文献   

16.
Isospin violating hadronic decays of the $ \eta$ and $ \eta{^\prime}$ mesons into 3 $ \pi$ mesons are driven by a term in the QCD Lagrangian proportional to the mass difference of the d and u quarks. The source giving large yield of the mesons for such decay studies are pp interactions close to the respective kinematical thresholds. The most important physics background for $ \eta$ , $ \eta{^\prime}$ $ \rightarrow$ $ \pi$ $ \pi$ $ \pi$ is coming from direct three-pion production reactions. In case of the $ \eta$ meson the background for the decays is relatively low ( $ \approx$ 10% . The purpose of this article is to provide an estimate of the direct pion production background for the $ \eta{^\prime}$ $ \rightarrow$ 3 $ \pi$ decays. Using the inclusive data from the COSY-11 experiment we have extracted the differential cross-section for the pp $ \rightarrow$ pp -multipion production reactions with the invariant mass of the pions equal to the $ \eta{^\prime}$ meson mass and estimated an upper limit for the signal to background ratio for studies of the $ \eta{^\prime}$ $ \rightarrow$ $ \pi^{+}_{}$ $ \pi^{-}_{}$ $ \pi^{0}_{}$ decay.  相似文献   

17.
The nucleus $\ensuremath {\rm ^{127}Sb}$ , which is on the neutron-rich periphery of the $\ensuremath \beta$ -stability region, has been populated in complex nuclear reactions involving deep-inelastic and fusion-fission processes with $\ensuremath {\rm {}^{136}Xe}$ beams incident on thick targets. The previously known isomer at 2325 keV in $\ensuremath {\rm {}^{127}Sb}$ has been assigned spin and parity $\ensuremath 23/2^+$ , based on the measured $\ensuremath \gamma$ - $\ensuremath \gamma$ angular correlations and total internal conversion coefficients. The half-life has been determined to be 234(12) ns, somewhat longer than the value reported previously. The 2194 keV state has been assigned $\ensuremath J^{\pi} = 19/2^+$ and identified as an isomer with $\ensuremath T_{1/2} = 14(1) {\rm ns}$ , decaying by two $\ensuremath E2$ branches. The observed level energies and transition strengths are compared with the predictions of a shell model calculation. Two $\ensuremath 15/2^+$ states have been identified close in energy, and their properties are discussed in terms of mixing between vibrational and three-quasiparticle configurations.  相似文献   

18.
Let ${Y_{m|n}^{\ell}}$ be the super Yangian of general linear Lie superalgebra for ${\mathfrak{gl}_{m|n}}$ . Let ${e \in \mathfrak{gl}_{m\ell|n\ell}}$ be a “rectangular” nilpotent element and ${\mathcal{W}_e}$ be the finite W-superalgebra associated to e. We show that ${Y_{m|n}^{\ell}}$ is isomorphic to ${\mathcal{W}_e}$ .  相似文献   

19.
In our previous coupled channel analysis based on the Cornell effective quark–quark interaction, it was indicated that the ${\psi(3S)}$ solution corresponding to ${\psi(4040)}$ originates from a ${{\rm D}^{^{*}}\overline{{\rm D}}^{*}}$ channel state. In this article, we report on a simultaneous analysis of the ${\psi}$ - and ${\Upsilon}$ -family states. The most conspicuous outcome is a finding that the ${\Upsilon(5S)}$ solution corresponding to ${\Upsilon(10860)}$ originates from a ${{\rm B}^{*}\overline{{\rm B}}^{*}}$ channel state, very much like ${\psi(3S)}$ . Some other characteristics of the result, including the induced very large SD mixing and relation of some of the solutions with newly observed heavy quarkonia-like states are discussed.  相似文献   

20.
In this article, we study the $\frac{1} {2}^ -$ and $\frac{3} {2}^ -$ heavy and doubly heavy baryon states $\Sigma _Q \left( {\frac{1} {2}^ - } \right)$ , $\Xi '_Q \left( {\frac{1} {2}^ - } \right)$ , $\Omega _Q \left( {\frac{1} {2}^ - } \right)$ , $\Xi _{QQ} \left( {\frac{1} {2}^ - } \right)$ , $\Omega _{QQ} \left( {\frac{1} {2}^ - } \right)$ , $\Sigma _Q^* \left( {\frac{3} {2}^ - } \right)$ , $\Xi _Q^* \left( {\frac{3} {2}^ - } \right)$ , $\Omega _Q^* \left( {\frac{3} {2}^ - } \right)$ , $\Xi _{QQ}^* \left( {\frac{3} {2}^ - } \right)$ and $\Omega _{QQ}^* \left( {\frac{3} {2}^ - } \right)$ by subtracting the contributions from the corresponding $\frac{1} {2}^ +$ and $\frac{3} {2}^ +$ heavy and doubly heavy baryon states with the QCD sum rules in a systematic way, and make reasonable predictions for their masses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号