首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydroperoxides formed by autoxidation of common fragrance terpenes are strong allergens and known to cause allergic contact dermatitis (ACD), a common skin disease caused by low molecular weight chemicals. Until now, no suitable methods for chemical analyses of monoterpene hydroperoxides have been available. Their thermolability prohibits the use of gas chromatography and their low UV-absorption properties do not promote sensitive analytical methods by liquid chromatography based on UV detection. In our study, we have investigated different liquid chromatography/mass spectrometry (LC/MS) ionization techniques, electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI), and atmospheric pressure photoionization (APPI), for detection of hydroperoxides from linalool and limonene.Flow injection analysis was used to evaluate the three different techniques to ionize the monoterpene hydroperoxides, linalool hydroperoxide and limonene hydroperoxide, by estimating the signal efficacy under experimental conditions for positive and negative ionization modes. The intensities for the species [M+H]+ and [M+H-H2O]+ in positive ionization mode and [M-H]- and [M-H-H2O]- in negative ionization mode were monitored. It was demonstrated that the mobile phase composition and instrumental parameters have major influences on the ionization efficiency of these compounds. ESI and APCI were both found to be appropriate as ionization techniques for detection of the two hydroperoxides. However, APPI was less suitable as ionization technique for the investigated hydroperoxides.  相似文献   

2.

The establishment of fragmentation pathways has a great interest in the identification of new or unknown related compounds present in complex samples. On that way, tentative fragmentation pathways for the ions generated by atmospheric pressure ionization of neutral per- and polyfluorinated alkyl substances (PFASs) have been proposed in this work. Electrospray (ESI), atmospheric pressure chemical ionization (APCI) and photoionization (APPI) were evaluated using mobile phases and source conditions that enhance the ionization efficiency of ions generated. A hybrid mass spectrometer consisting of a linear ion trap and an Orbitrap was used to combine the information of both multiple-stage mass spectrometry (MSn) and mass accuracy measurements to characterize and establish the genealogical relationship between the product ions observed. The ionization mechanisms to generate ions such as [M–H], [M]−•, and [M+O2]−• or the in-source collision-induced dissociation (CID) fragment ions in each API source are discussed in this study. In general, fluorotelomer olefins (FTOs) ionized in negative-ion APCI and APPI generated the molecular ion, while fluorotelomer alcohols (FTOHs) also provided the deprotonated molecule. Besides, fluorooctane sulfonamides (FOSAs) and sulfonamido-ethanols (FOSEs) led to the deprotonated molecule and in-source CID fragment ions, respectively. The fragmentation pathways from these precursor ions mainly involved initial α,β-eliminations of HF units and successive losses of CF2 units coming from the perfluorinated alkyl chain. Moreover, FTOHs and FOSEs showed a high tendency to generate adduct ions under negative-ion ESI and APPI conditions. The fragmentation study of these adduct ions has demonstrated a strong interaction with the attached moiety.

Graphical abstract

  相似文献   

3.
A non-covalent-bonded dimer was detected in the positive ion electrospray ionisation (ESI) mass spectra of a synthetic impurity. In tandem mass spectrometry (MS/MS) experiments using collision-induced dissociation (CID), the ion was found to behave as a [M+H]+-type precursor ion for fragmentation until MS5. The dimer was probably formed through multi-hydrogen bonds over a proton bridge. When the fragmentation occurred at the center of the bridge, the dimer was broken apart to give monomer fragments at MS6. However, no corresponding deprotonated dimer [2M-H]- was found in the negative ion ESI spectra. The dimer was extremely stable, and it could still be observed when a fragmentation voltage of up to 50 V was applied in the ionisation source. The formation of the non-covalent dimer was also found to be instrument-dependent, but independent of sample concentration. Accurate mass measurements of the [2M+H]+ and [M+H]+ ions, and their MSn product ions, provided the basis for assessing the fragmentation mechanism proposed for [2M+H]+. The fragmentation pathway was also illustrated for the deprotonated molecule [M-H]-.  相似文献   

4.
Liquid chromatography/ultraviolet (LC/UV) and mass spectrometry/mass spectrometry (MS/MS) libraries containing 39 phenolic compounds were established by coupling a LC and an ion trap MS with an electrospray ionization (ESI) source, operated in negative ion mode. As a result, the deprotonated [M-H]- molecule was observed for all the analyzed compounds. Using MS/MS hydroxybenzoic acid and hydroxycinnamic acids showed a loss of CO2 and production of a [M-H-44]- fragment and as expected, the UV spectra of these two compounds were affected by their chemical structures. For flavonol and flavonol glycosides, the spectra of their glycosides and aglycones produced deprotonated [M-H]- and [A-H]- species, respectively, and their UV spectra each presented two major absorption peaks. The UV spectra and MS/MS data of flavan-3-ols and stilbenes were also investigated. Using the optimized LC/MS/MS analytical conditions, the phenolic extracts from six representative wine samples were analyzed and 31 phenolic compounds were detected, 26 of which were identified by searching the LC/UV and MS/MS libraries. Finally, the presence of phenolic compounds was confirmed in different wine samples using the LC/UV and LC/MS/MS libraries.  相似文献   

5.
The mass spectra of new substituted pyrrolidino[60]- and [70]fullerenes have been obtained using electrospray ionization conditions in the positive and negative mode of detection with two different mass spectrometers, a quadrupole ion trap and a Fourier transform ion cyclotron resonance. Radical anions M(●-) and deprotonated molecules [M-H](-) are formed under negative electrospray ionization mass spectrometry conditions, and the collision-induced dissociations of both ionic species have been studied. Either negative odd-electron ions or negative even-electron ions undergo a retro-cycloaddition process forming the corresponding fullerene product ions C(60)(●-) and C(70)(●-). The generation of fullerene radical anions from deprotonated molecules is a new exception of the "even-electron rule." In contrast, the protonated molecules [M + H](+) obtained from the positive mode of detection do not undergo this cycloreversion reaction, and the MS(n) experiment reveals a variety of eliminations of neutral molecules involving different hydrogen shifts and multiple bond cleavages that lead eventually to substituted methanofullerene fragment ions. The observed fragmentations can be correlated with the electronic character of the substituents attached to the heterocyclic moiety. The results obtained from the thermal reactions of these compounds, carried out under different pH conditions, correlate well with those obtained in gas phase. The different behaviors between protonated and unprotonated molecules and ions can be explained assuming that the retro-cycloaddition reaction takes place only when the nitrogen atom of the pyrrolidine ring (the basic center of the molecule) is unprotonated both in gas and condensed phase. The protonation of the NH group inhibits the cycloreversion process, and therefore different fragmentations take place. The detailed mechanisms of the formation and evolution of the intermediate fragments are described.  相似文献   

6.
Ginsenosides containing different numbers of glycosyl groups can be easily differentiated based on the formation of characteristic ginsenoside-acetate adduct anions and deprotonated ginsenosides generated by electrospray ionization (ESI) of methanolic solutions of ginsenosides (M) and ammonium acetate (NH4OAc). Ginsenosides containing two glycosyl groups gave a characteristic mass spectral pattern consisting of [M+2OAc]2-, [M-H+OAc]2- and [M-2H]2- ions with m/z values differing by 30 Th, while this mass spectral pattern was not observed for ginsenosides containing one glycosyl group. Formation of [M+2OAc]2- was influenced by the chain length of glycosyl groups and was used to differentiate the ginsenosides containing different combinations of monosaccharide and disaccharide units in the glycosyl groups. Under identical collisional activation conditions, [M+OAc]-, [M-H+OAc]2- and [M+2OAc]2- underwent proton abstractions predominantly to generate [M-H]-, [M-2H]2- and [M-H+OAc]2- ions, respectively. The ion intensity ratios, I[M-H](-/I) [M+OAc]-, I[M-2H](2-/I) [M-H+2OAc]2- and I[M-H+OAc](2-/I) [M+OAc]2-, being sensitive to the structural differences of ginsenosides, could differentiate the isomeric ginsenosides, including (i) Rf, F11 and Rg1, (ii) Rd and Re, and (iii) Rb2 and Rc. Additionally, NH4OAc was found to enhance the sensitivity of detection of ginsenosides in the form of [M-H]- down to the femtomole level.  相似文献   

7.
Liquid chromatography coupled to negative electrospray ionization (ESI) tandem mass spectrometry (MS/MS) employing a triple quadrupole mass spectrometer was used in the structural determination of acylated flavonoid-O-glycosides and methoxylated flavonoids occurring in Tagetes maxima. The compounds were identified by experiments in full scan mode (MS), and tandem mass experiments (MS/MS) of precursor ion scan, product ion scan, and neutral loss scan modes. In order to characterize the aglycones of the flavonoid glycosides, in-source fragmentation of the deprotonated molecule [M-H]- followed by product ion scan of the resulting aglycone [A-H]- were performed. This combined approach allowed the identification of 51 phenolic compounds, including flavonoid-O-glycosides acylated with galloyl, protocatechuoyl, coumaroyl or caffeoyl groups, methoxylated flavonoids, and hydroxycinnamic acid and phenolic acid derivatives, none of them previously reported in Tagetes maxima.  相似文献   

8.
Seven structure analogical flavonoid aglycones have been analyzed using electrospray ionization tandem mass spectrometry (ESI-MSn) in the negative-ion mode. The spectra obtained ESI-MSn allowed us to propose plausible schemes for their fragmentation mechanism. By analyzing the product ions spectra of deprotonated molecule ions [M-H](-), some neutral diagnostic losses and specific retro Diels-Alder fragments were obtained. By using all of these characteristic fragment ions we can specially differentiate the flavone isomer.  相似文献   

9.
In this study, several anticancer drugs and their analogues consisting of organic and organometallic compounds were analyzed by electrospray ionization mass spectrometry (ESI/MS) using a quadrupole mass spectrometer. Protonated molecular ions [M+H]+ were observed for all of the compounds studied, and in the case of the two steroid sulfates, deprotonated molecular ions [M-H]? were obtained. Tandem mass spectrometry was performed on these quasimolecular ions, and the product ions formed provided useful fragmentation patterns that were characteristic for the compounds. This study provides evidence that ESI/MS is a sensitive technique for structure confirmation and identification of small organic and organometallic molecules.  相似文献   

10.
The mass spectrometric (MS) and tandem mass spectrometric (MS/MS) behavior of six nitrocatechol-type glucuronides using atmospheric pressure chemical ionization (APCI) and electrospray ionization (ESI) was systematically studied, and the effect of operation parameters on the fragmentations are presented. The positive ion APCI- and ESI-MS spectra showed an intense protonated molecule and the respective negative ion spectra a deprotonated molecule with minimal fragmentation. The main fragment ions in the MS/MS spectra of the protonated and deprotonated molecules were [M + H - Glu]+ and [M - H - Glu]-, respectively, formed by the loss of the glucuronide moiety. The measured limits of detection indicated that ESI is a significantly more efficient ionization method than APCI in the negative and positive ion modes for the compounds studied. MS/MS was found to be less sensitive, but more reliable and simple than MS due to the absence of chemical noise.  相似文献   

11.
This work serves as a follow-up to Part I of experiments designed to determine the underlying principles in the formation of pseudomolecular, or adduct, ions during electrospray ionization. Aromatic acids were studied by flow injection analysis in the negative ionization mode of electrospray ionization mass spectrometry. Part I dealt with common acidic anti-inflammatory pharmaceuticals. such as ibuprofen and related analogues. Part II deals with functionally less complex molecules, namely benzoic acid (BA) and substituted benzoic acids. Halide-substituted molecules are investigated to deduce the effect of electron-withdrawing substituents (bromo-, chloro-, and fluoro-) and ring position (ortho-, meta- and para-) on the response of a traditional deprotonated molecular ion ([M-H]-) and a sodium-bridged dimer ion ([2M-2 H+Na]-). Amino-substituted benzoic acids are also analyzed in order to study the effect of an additional ionizable group on the molecule, and para-tert.-butyl-BA is analyzed to study the effect of increased hydrophobicity, as they relate to the formation of pseudomolecular ions. This study shows that solution character [octanol-water partition coefficient (or log P) and pKa] of the model compounds controls the relative efficiency of formation of [M-H]- and [2M-2H+Na]- ions. However the relative gas phase character (gas phase basicity and proton affinity) also has a significant effect on the formation of the sodium-bridged dimer ion. For the halide-substituted species, placement of the electron-withdrawing atom at the meta-position gives the greatest enhancement in sensitivity. Observations also show that as the structural complexity of the model compound increases, predictions relating analyte acidity to sodium-bridged dimer ion formation give way to a stronger dependence between log P values and ionization efficiency. Supporting this hypothesis is the nearly ten-fold enhancement in signal for tert.-butyl BA relative to BA. due to the greater hydrophobicity, and consequently, increased surface activity in an electrosprayed droplet of the analyte molecule.  相似文献   

12.
Mass spectrometric and tandem mass spectrometric behavior of eight anabolic steroid glucuronides were examined using electrospray (ESI) and atmospheric pressure chemical ionization (APCI) in negative and positive ion mode. The objective was to elucidate the most suitable ionization method to produce intense structure specific product ions and to examine the possibilities of distinguishing between isomeric steroid glucuronides. The analytes were glucuronide conjugates of testosterone (TG), epitestosterone (ETG), nandrolone (NG), androsterone (AG), 5alpha-estran-3alpha-ol-17-one (5alpha-NG), 5beta-estran-3alpha-ol-17-one (5beta-NG), 17alpha-methyl-5alpha-androstane-3alpha,17beta-diol (5alpha-MTG), and 17alpha-methyl-5beta-androstane-3alpha,17beta-diol (5beta-MTG), the last four being new compounds synthesized with enzyme-assisted method in our laboratory. High proton affinity of the 4-ene-3-one system in the steroid structure favored the formation of protonated molecule [M + H]+ in positive ion mode mass spectrometry (MS), whereas the steroid glucuronides with lower proton affinities were detected mainly as ammonium adducts [M + NH4]+. The only ion produced in negative ion mode mass spectrometry was a very intense and stable deprotonated molecule [M - H]- . Positive ion ESI and APCI MS/MS spectra showed abundant and structure specific product ions [M + H - Glu]+, [M + H - Glu - H2O]+, and [M + H - Glu - 2H2O]+ of protonated molecules and corresponding ions of the ammonium adduct ions. The ratio of the relative abundances of these ions and the stability of the precursor ion provided distinction of 5alpha-NG and 5beta-NG isomers and TG and ETG isomers. Corresponding diagnostic ions were only minor peaks in negative ion MS/MS spectra. It was shown that positive ion ESI MS/MS is the most promising method for further development of LC-MS methods for anabolic steroid glucuronides.  相似文献   

13.
Dinoterb (6-t-butyl-2,4-dinitrophenol), 1, Dinoseb (6-secbutyl-2,4-dinitrophenol), 2, TBP (2-t-butylphenol), 3, and DNP (2,4-dinitrophenol), 4, have been analyzed by electrospray ionization in the negative mode (ESI-N) - tandem mass spectrometry. Nominal laboratory collision energy was varied from zero to 60 eV during the experiments. Apparent fragmentation energies were estimated from a parametric fitting of the collision efficiency curves. In parallel, fragmentation mechanisms of the deprotonated molecules [M-H](-) were explored using quantum chemistry modeling at the B3LYP/6-31 + G(d,p) level. A major fragmentation of the [M-H](-) ions of Dinoterb and Dinoseb is elimination of an alcohol molecule. This reaction is shown to involve one oxygen atom originating from a nitro group rather than the phenoxide moiety. Eliminations of NO, C(4) and CH(2) = C(CH(3))(2), i.e. reactions involving significant rearrangements, constitute the major part of the other fragmentation pathways observed from [3-H](-) and [4-H](-) ions.  相似文献   

14.
Unusual ionization behavior was observed with novel antineoplastic curcumin analogues during the positive ion mode of matrix‐assisted laser desorption ionization (MALDI) and dopant‐free atmospheric pressure photoionization (APPI). The tested compounds produced an unusual significant peak designated as [M ? H]+ ion along with the expected [M + H]+ species. In contrast, electrospray ionization, atmospheric pressure chemical ionization and the dopant‐mediated APPI (dopant‐APPI) showed only the expected [M + H]+ peak. The [M ? H]+ ion was detected with all evaluated curcumin analogues including phosphoramidates, secondary amines, amides and mixed amines/amides. Our experiments revealed that photon energy triggers the ionization of the curcumin analogues even in the absence of any ionization enhancer such as matrix, solvent or dopant. The possible mechanisms for the formation of both [M ? H]+ and [M + H]+ ions are discussed in this paper. In particular, three proposed mechanisms for the formation of [M ? H]+ were evaluated. The first mechanism involves the loss of H2 from the protonated [M + H]+ species. The other two mechanisms include hydrogen transfer from the analyte radical cation or hydride abstraction from the neutral analyte molecule. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
Underivatized neutral oligosaccharides from human milk were analyzed by nano-electrospray ionization (ESI) using a quadrupole ion trap mass spectrometer (QIT-MS) in the negative-ion mode. Under these conditions neutral oligosaccharides are observed as deprotonated molecules [M-H]- with high intensity. CID-experiments of these species with the charge localized at the reducing end lead to C-type fragment ions forming a "new" reducing end. Fragmentations are accompanied by cross-ring cleavages that yield information about linkages of internal monosaccharides. Several isomeric compounds with distinct structural features, such as different glycosidic linkages, fucosylation and branching sites were investigated. The rules governing the fragmentation behavior of this class of oligosaccharides were elucidated and tested for a representative number of certain isomeric glycoforms using the MS/MS and MS(n) capabilities of the QIT. On the basis of the specific fragmentation behavior of deprotonated molecules, the position of fucoses and the linkage type (Gal beta-->3 GlcNAc or Gal beta1-->4 GlcNAc) could be determined and linear and branched could be differentiated. Rules could be established which can be applied in further investigations of these types of oligosaccharides even from heterogenous mixtures.  相似文献   

16.
Capillary electrophoresis/mass spectrometry (CE/MS) is predominantly carried out using electrospray ionization (ESI). Recently, atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI) have become available for CE/MS. With the VUV lamp turned off, the APPI source may also be used for CE/MS by thermospray ionization (TSI). In the present study the suitability of ESI, APCI, APPI and TSI for drug impurity profiling by CE/MS in the positive ion mode is evaluated. The drugs carbachol, lidocaine and proguanil and their potential impurities were used as test compounds, representing different molecular polarities. A background electrolyte of 100 mM acetic acid (pH 4.5) provided baseline separation of nearly all impurities from the respective drugs. APPI yielded both even‐ and odd‐electron ions, whereas the other ionization techniques produced even‐electron ions only. In‐source fragmentation was more pronounced with APCI and APPI than with ESI and TSI, which was most obvious for proguanil and its impurities. In general, ESI and TSI appeared the most efficient ionization techniques for impurities that are charged in solution achieving detection limits of 100 ng/mL (full‐scan mode). APPI and APCI showed a lower efficiency, but allowed ionization of low and high polarity analytes, although quaternary ammonium compounds (e.g. carbachol) could not be detected. Largely neutral compounds, such as the lidocaine impurity 2,6‐dimethylaniline, could not be detected by TSI, and yielded similar detection limits (500 ng/mL) for ESI, APPI and APCI. In many cases, impurity detection at the 0.1% (w/w) level was possible when 1 mg/mL of parent drug was injected with at least one of the CE/MS systems. Overall, the tested CE/MS systems provide complementary information as illustrated by the detection and identification of an unknown impurity in carbachol. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Metal salen complexes are one of the most frequently used catalysts in enantioselective organic synthesis. In the present work, we compare a series of ionization methods that can be used for the mass spectral analysis of two types of metalosalens: ionic complexes (abbreviated as Com+X?) and neutral complexes (NCom). These methods include electron ionization and field desorption (FD) which can be applied to pure samples and atmospheric pressure ionization techniques: electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI) which are suitable for solutions. We found that FD is a method of choice for recording molecular ions of the complexes containing even loosely bonded ligands. The results obtained using atmospheric pressure ionization methods show that the results depend mainly on the structure of metal salen complex and the ionization method. In ESI spectra, Com+ ions were observed, while in APCI and APPI spectra both Com+ and [Com + H]+ ions are observed in the ratio depending on the structure of the metal salen complex and the solvent used in the analysis. For complexes with tetrafluoroborate counterion, an elimination of BF3 took place, and ions corresponding to complexes with fluoride counterion were observed. Experiments comparing the relative sensitivity of ESI, APCI and APPI (with and without a dopant) methods showed that for the majority of the studied complexes ESI is the most sensitive one; however, the sensitivity of APCI is usually less than two times lower and for some compounds is even higher than the sensitivity of ESI. Both methods show very high linearity of the calibration curve in a range of about 3 orders of magnitude of the sample concentration. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
The performance of the atmospheric pressure photoionization (APPI) technique was evaluated against five sets of standards and drug-like compounds and compared to atmospheric pressure chemical ionization (APCI) and electrospray ionization (ESI). The APPI technique was first used to analyze a set of 86 drug standards with diverse structures and polarities with a 100% detection rate. More detailed studies were then performed for another three sets of both drug standards and proprietary drug candidates. All 60 test compounds in these three sets were detected by APPI with an overall higher ionization efficiency than either APCI or ESI. Most of the non-polar compounds in these three sets were not ionized by APCI or ESI. Analysis of a final set of 201 Wyeth proprietary drug candidates by APPI, APCI and ESI provided an additional comparison of the ionization techniques. The detection rates in positive ion mode were 94% for APPI, 84% for APCI, and 84% for ESI. Combining positive and negative ion mode detection, APPI detected 98% of the compounds, while APCI and ESI detected 91%, respectively. This analysis shows that APPI is a valuable tool for day-to-day usage in a pharmaceutical company setting because it is able to successfully ionize more compounds, with greater structural diversity, than the other two ionization techniques. Consequently, APPI could be considered a more universal ionization method, and therefore has great potential in high-throughput drug discovery especially for open access liquid chromatography/mass spectrometry (LC/MS) applications.  相似文献   

19.
Electron ionization (EI) and positive electrospray ionization (ESI) mass spectra of selected diaryl enaminoketones and enaminothiones have been studied. In the EI mass spectra of both classes of compound, molecular ion peaks are accompanied by the peaks corresponding to the [M-H](+) ions. The formation of these ions can be rationalized by a cyclization reaction resulting in the formation of the respective isoxazolium and isothiazolium cations. Under positive ESI conditions, in the spectra recorded for the enaminoketones peaks corresponding to the [M+H](+), [M+Na](+) and [2M+Na](+) ions appeared, while in the spectra recorded for the enaminothiones, peaks corresponding to the [M-H](+) ions were dominant. These ions are most likely formed by oxidation of the neutral enaminothione molecules on the surface of the positively charged stainless steel capillary in the ESI ion source (anodic oxidation).  相似文献   

20.
The analytical hyphenation of micro-flow high-performance liquid chromatography (LC), with post-column liquid mixing and mass spectrometric detection (MS) was established to detect partially oxidized polycyclic aromatic hydrocarbons (oxy-PAHs) for low quantity samples. 100pmol injections of 30 reference standards could be detected in good sensitivity using either atmospheric pressure chemical ionization (APCI) and/or atmospheric pressure photoionization (APPI). The connected mass spectrometer was a single quadrupol analyzer realizing simultaneous registration of positive and negative ions in scan range width of 200 - 300Da. The ionization efficiency was compared using three ionization sources (incl. electrospray ionization (ESI)) for several oxy-PAHs. According to the mass spectra, the analytes behave differently in ionization properties. Ionization mechanism (e.g. deprotonated ions and electron captured ions) could be discussed with new inside views. Finally, the hyphenated system was applied to an exemplary aerosol extract and thus highlighting the expedient utilization of this downscaled method for real samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号