首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Laser wake field acceleration: the highly non-linear broken-wave regime   总被引:2,自引:0,他引:2  
We use three-dimensional particle-in-cell simulations to study laser wake field acceleration (LWFA) at highly relativistic laser intensities. We observe ultra-short electron bunches emerging from laser wake fields driven above the wave-breaking threshold by few-cycle laser pulses shorter than the plasma wavelength. We find a new regime in which the laser wake takes the shape of a solitary plasma cavity. It traps background electrons continuously and accelerates them. We show that 12-J, 33-fs laser pulses may produce bunches of 3×1010 electrons with energy sharply peaked around 300 MeV. These electrons emerge as low-emittance beams from plasma layers just 700-μm thick. We also address a regime intermediate between direct laser acceleration and LWFA, when the laser-pulse duration is comparable with the plasma period. Received: 12 December 2001 / Published online: 14 March 2002  相似文献   

2.
An externally applied longitudinal magnetic field was found to enhance the particle trapping in the laser wakefield acceleration. When a static magnetic field of a few tens of tesla is applied in parallel with the propagation direction of a driving laser pulse, it is shown from two-dimensional particle-in-cell simulations that total charge of the trapped beam and its maximum energy increase. The analysis of electron trajectories strongly suggests that the enhanced trapping originates from the suppression of the transverse motion by the magnetic field. The enhanced trapping by the magnetic field was observed consistently for various values of the plasma density, the amplitude of the laser pulse and pulse spot size.  相似文献   

3.
We investigate the kinetic energy of expanding plasma of a solid target heated by a ultra-short and ultra-intense laser pulse and the efllciency of energy coupling between the ultra-intense laser pulse and the solid target, in order to increase the utilization ratio of laser energy and to raise the neutron generation farther. Some new ideas about improving the energy utilization by head-on collision~, between the expanding plasmas are proposed. The significance is the raise of generation of shorter duration neutron, of the order of picoseconds, which allows for an increase of energy resolution in time-of-flight experiments and also for the investigation of the dynamics of nuclear processes with high temporal resolution.  相似文献   

4.
Hot electrons are generated in the interaction between intense ultrashort laser pulses with targets. The process depends on the laser intensity, polarization, incident angle, scale length of plasmas and target materials. In this paper, the recent progress on generation and propagation of hot electrons in non-relativistic and relativistic laser-plasma interactions at the Institute of Physics, Chinese Academy of Sciences, are reviewed.  相似文献   

5.
We present a relativistic single particle simulation of vacuum acceleration of an electron by a high-intensity radially polarized laser beam. The inherent complete symmetry of radially polarized laser beam leads to improvement in the trapping and acceleration of an electron so that an electron can be accelerated to the level of GeV. In addition, the external magnetic field further enhances the electron acceleration. Hence, an electron of ultrahigh energy was observed. The strong correlation between final electron energy and scattering angle is discussed.  相似文献   

6.
Electron dynamics characteristics in high-intensity laser fields   总被引:1,自引:0,他引:1  
This paper addresses the conditions under which the vacuum laser acceleration scheme CAS (capture and acceleration scenario), newly proposed by the authors (see, e.g., P.X. Wang et al., Appl. Phys. Lett. 78, 2253 (2001)), can be observed. Specifically, the laser intensity threshold (a0)th and the range of the electron incident momentum for the CAS scheme to emerge are examined. We found that (a0)th is critically dependent on the laser beam width w0. At kw0=60, (a0)th=8, which is an intensity obtainable using present laser systems. The required energy of the incident electron is in the range 5–15 MeV. This study is of significance in designing an experimental setup to test CAS and helpful in understanding the basic physics of CAS. Received: 4 March 2002 / Revised version: 25 March 2002 / Published online: 8 May 2002  相似文献   

7.
Self-injection and acceleration of monoenergetic electron beams from laser wakefield accelerators are first investigated in the highly relativistic regime, using 100 TW class, 27 fs laser pulses. Quasi-monoenergetic multi- bunched beams with energies as high as multi-hundredMeV are observed with simultaneous measurements of side-scattering emissions that indicate the formation of self-channelfing and self-injection of electrons into a plasma wake, referred to as a 'bubble'. The three-dimensional particle-in-cell simulations confirmed multiple self-injection of electron bunches into the bubble and their beam acceleration with gradient of 1.5 GeV/cm.  相似文献   

8.
The phase-space evolution in a non-relativistic and homogeneous laser plasma in the presence of the stimulated Raman scattering is studied. Transform method is used for a solution of the set of partial differential equations which consists of the Vlasov equation and of the full set of Maxwell equations in a 1D model. Numerical instability of the Fourier-Hermite representation is described and discussed. To overcome numerical instabilities during the simulation, a simplified Fokker-Planck collision term is employed. In the collisionless case the solution is pushed to the practicable limit and the initial phase of particle trapping and acceleration in the potential wells of the electrostatic wave accompanying the Raman backscattered wave was recorded. Also the growth of the electrostatic partner of the Raman forward scattered wave was observed.  相似文献   

9.
The plasma jet formed on the rear surface of a foil in laser–solid interaction is investigated by laser probing. The rear plasma jet, which is in line with the laser, formed a few picoseconds after the incidence of the focused laser, is due to a beam of fast electrons propagating through the target and is collimated by a strong magnetic field in the plasma. Received: 14 January 2003 / Revised version: 2 April 2003 / Published online: 2 June 2003 RID="*" ID="*"Corresponding author. Fax: +86-10/8264-9531 E-mail: jzhang@aphy.iphy.ac.cn  相似文献   

10.
We present two sets of experimental results on the ablation-rate decrease with increase of the number of consecutive laser pulses hitting the same spot on the target surface. We have studied laser ablation of a carbon target with nanosecond pulses in two different interaction regimes: one with a XeCl laser (λ=308 nm) and the other with a Nd:YAG laser (λ=1064 nm), in both cases at the intensity ∼5×108 W/cm2 Two different mechanisms were found to be responsible for the ablation-rate decrease; they are directly related to the two different laser–matter interaction regimes. The UV-laser interaction is in the regime of transparent vapour (surface absorption). The increase of the neutral vapour density in the crater produced by the preceding laser pulses is the main reason for the decrease of ablation rate. With the IR laser each single laser pulse interacts with a partially ionised plume. With increase of the number of pulses hitting the same spot on the target surface, the laser–matter interaction regime gradually changes from the near-surface absorption to the volume absorption, resulting in the decrease in absorption in the target and thus in the decrease in the ablation rate. The change in the evaporation rate was considered for both vacuum and reactive-gas environments. Received: 21 February 2001 / Accepted: 26 February 2001 / Published online: 23 May 2001  相似文献   

11.
We report the observation of the Debye–Scherrer diffraction using electron pulses emitted from a fs-laser plasma. Titanium sapphire laser pulses with 1.6 mJ/45 fs at 1 kHz are focused on a moving steel tape at close to normal incidence. The laser plasma generated ejects a large number of electrons in the direction of polarization, with a continuous energy spectrum extending up to 100 keV. Selecting an energy range of these electrons and scattering them on a thin aluminium sample generates a “streaked” diffraction pattern with unique features.  相似文献   

12.
We present results of measurements of fluorescence spectra due to the interaction of a Ti:sapphire laser pulse with N2 molecules at different gas pressures and pulse energies. The analysis of the data together with the results of numerical simulations, using a propagation model, reveal signatures of the phenomena of intensity clamping and of re-focusing of the laser pulse at high gas pressure. The laser pulse energy for intensity clamping as a function of the gas pressure is determined. Received: 21 May 2001 / Revised version: 10 July 2001 / Published online: 19 September 2001  相似文献   

13.
The steady state ion acceleration at the front of a cold solid target by a circularly polarized flat-top laser pulse is studied with one-dimensional particle-in-cell (PIC) simulation. A model that ions are reflected by a steady laser-driven piston is used by comparing with the electrostatic shock acceleration. A stable profile with a double-flat-top structure in phase space forms after ions enter the undisturbed region of the target with a constant velocity.  相似文献   

14.
The water droplet laser plasma source has been shown to have many attractive features as a continuous, almost debris-free source for extreme ultraviolet (EUV) and X-ray applications. Through a dual experimental and theoretical study, we analyze the interaction physics between the laser light and the target. The hydrodynamic laser plasma simulation code, Medusa103 is used to model the electron density distribution for comparison to electron density distributions obtained through Abel inversion of plasma interferograms. In addition, flat field EUV spectra are compared to synthetic spectra calculated with the atomic physics code RATION. Received: 31 October 2002 / Accepted: 8 February 2003 / Published online: 28 May 2003 RID="*" ID="*"Present address: Naval Reseach Laboratory, Washington D.C. RID="**" ID="**"Present address: Xtreme Technologies, G?ttingen, Germany. RID="***" ID="***"Corresponding author. Fax: +1-407/823-3570, E-mail: mrichard@mail.ucf.edu  相似文献   

15.
Two-dimensional particle-in-cell (PIC) simulations of laser-triggered ion acceleration in overdense plasma at moderate intensity (≃1.4×1018 W/cm2) and pulse duration (≃0.5 ps) are presented. We focus on the comparison of the efficiency of ion acceleration for normal and oblique incidence of the laser light, for backward and forward directions of ion emission, and for large and small focal spots. We discuss the correlation between the properties of accelerated ions and hot electrons, and identify the tendency of the ion spectra in the forward direction to those typical for the isothermal and adiabatic regimes of plasma expansion.  相似文献   

16.
We present atomic, energy, and charge spectra of ions accelerated at the front surface of a silicon target irradiated by a high-contrast femtosecond laser pulse with an intensity of 3×1016 W/cm2, which is delayed with respect to a cleaning nanosecond laser pulse of 3-J/cm2 energy density. A tremendous increase in the number of fast silicon ions and a significant growth of their maximum charge in the case of the cleaned target from 5+ to 12+ have been observed. The main specific features of the atomic, energy, and charge spectra have been analyzed by means of one-dimensional hydrodynamic transient-ionization modeling. It is shown that fast highly charged silicon ions emerge from the hot plasma layer with a density a few times less than the solid one, and their charge distribution is not deteriorated during plasma expansion.This revised version was published online in August 2005 with a corrected cover date.  相似文献   

17.
We present a theoretical investigation of the excitation of multiple electrostatic wakefields by the ponderomotive force of a short electromagnetic pulse propagating through a dense plasma. It is found that the inclusion of the quantum statistical pressure and quantum electron tunneling effects can qualitatively change the classical behavior of the wakefield. In addition to the well-known plasma oscillation wakefield, with a wavelength of the order of the electron skin depth (λe=c/ωpe, which in a dense plasma is of the order of several nanometers, where c is the speed of light in vacuum and ωpe is the electron plasma frequency), wakefields in dense plasmas with a shorter wavelength (in comparison with λe) are also excited. The wakefields can trap electrons and accelerate them to extremely high energies over nanoscales.  相似文献   

18.
New exact results are obtained for relativistic acceleration of test positive ions in the laminar zone of a planar electron sheath evolving from an initially mono-energetic electron distribution. The electron dynamics is calculated against the background of motionless foil ions. The limiting gamma-factor γp∞ of accelerated ions is shown to be determined primarily by the values of the ion-electron charge-over-mass ratio μ=meZp/mp and the initial gamma-factor γ0 of the accelerated electrons. For μ> 1/8 a test ion always overtakes the electron front and attains γp∞> γ0. For μ< 1/8 a test ion can catch up with the electron front only when γ0 is above a certain critical value γcr, which for μ≪1 can most often be evaluated as . In this model the protons and heavier test ions, for which γcr> 10398 is enormous, always lag behind the front edge of the electron sheath and have γp∞< γ0; for their maximum energy an appropriate intermediate asymptotic formula is derived. The domain of applicability of the laminar-zone results is analyzed in detail.  相似文献   

19.
M. Verschl 《Optics Communications》2008,281(17):4352-4357
A novel scheme allowing for relativistic collisions of laser-accelerated electrons is introduced. Two spatially separated electron bunches are driven in opposite directions by two counterpropagating laser pulses until they reach the point of collision which lies within the laser fields. This method can be employed to accelerate electrons to the maximum kinetic energy which can be transferred to charged particles by plane propagating laser fields. Due to the symmetric setup, the center of momentum is at rest with respect to the laser propagation direction such that virtually the whole kinetic energy is available for particle reactions.  相似文献   

20.
Fundamentals and applications of polymers designed for laser ablation   总被引:1,自引:0,他引:1  
The ablation characteristics of various polymers were studied at low and high fluences for an irradiation wavelength of 308 nm. The polymers can be divided into three groups, i.e. polymers containing triazene groups, designed ester groups, and reference polymers, such as polyimide. The polymers containing the photochemically most active group (triazene) exhibit the lowest thresholds of ablation (as low as 25 mJ cm-2) and the highest etch rates (e.g. 250 nm/pulse at 100 mJ cm-2), followed by the designed polyesters and then polyimide. Neither the linear nor the effective absorption coefficients have a clear influence on the ablation characteristics. The different behavior of polyimide might be explained by a pronounced thermal part in the ablation mechanism. The laser-induced decomposition of the designed polymers was studied by nanosecond interferometry and shadowgraphy. The etching of the triazene polymer starts and ends with the laser pulse, indicating photochemical ablation. Shadowgraphy reveals mainly gaseous products and a pronounced shockwave in air. The designed polymers were tested for an application as the polymer fuel in laser plasma thrusters. Received: 21 October 2002 / Accepted: 20 January 2003 / Published online: 28 May 2003 RID="*" ID="*"Corresponding author. Fax: +41-56/3104-412, E-mail: thomas.lippert@psi.ch  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号