首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Ni‐catalyzed C(sp2)?H/C(sp3)?H coupling of benzamides with toluene derivatives was recently successfully achieved with mild oxidant iC3F7I. Herein, we employ density functional theory (DFT) methods to resolve the mechanistic controversies. Two previously proposed mechanisms are excluded, and our proposed mechanism involving iodine‐atom transfer (IAT) between iC3F7I and the NiII intermediate was found to be more feasible. With this mechanism, the presence of a carbon radical is consistent with the experimental observation that (2,2,6,6‐tetramethylpiperidin‐1‐yl)oxyl (TEMPO) completely quenches the reaction. Meanwhile, the hydrogen‐atom abstraction of toluene is irreversible and the activation of the C(sp2)?H bond of benzamides is reversible. Both of these conclusions are in good agreement with Chatani's deuterium‐labeling experiments.  相似文献   

2.
Cationic cobalt complexes enable unprecedented cobalt‐catalyzed C?H/C?C functionalizations with unique selectivity features. The versatile cobalt catalyst proved broadly applicable, enabled efficient C?H/C?C cleavage at room temperature, and delivered Z‐alkenes with excellent diastereocontrol.  相似文献   

3.
A novel radical‐based approach for the iron‐catalyzed selective cleavage of acetal‐derived alkylsilyl peroxides, followed by the formation of a carbon–carbon bond is reported. The reaction proceeds under mild reaction conditions and exhibits a broad substrate scope with respect to the acetal moiety and the carbon electrophile. Mechanistic studies suggest that the present reaction proceeds through a free‐radical process involving carbon radicals generated by the homolytic cleavage of a carbon–carbon bond within the acetal moiety. A synthetic application of this method to sugar‐derived alkylsilyl peroxides is also described.  相似文献   

4.
Experimental and computational studies provide detailed insight into the selectivity‐ and reactivity‐controlling factors in bifurcated ruthenium‐catalyzed direct C?H arylations and dehydrogenative C?H/C?H functionalizations. Thorough investigations revealed the importance of arene‐ligand‐free complexes for the formation of biscyclometalated intermediates within a ruthenium(II/IV/II) mechanistic manifold.  相似文献   

5.
《化学:亚洲杂志》2017,12(2):239-247
Five bis(quinolylmethyl)‐(1H ‐indolylmethyl)amine (BQIA) compounds, that is, {(quinol‐8‐yl‐CH2)2NCH2(3‐Br‐1H ‐indol‐2‐yl)} ( L1H ) and {[(8‐R3‐quinol‐2‐yl)CH2]2NCH(R2)[3‐R1‐1H ‐indol‐2‐yl]} ( L2–5H ) ( L2H : R1=Br, R2=H, R3=H; L3H : R1=Br, R2=H, R3=i Pr; L4H : R1=H, R2=CH3, R3=i Pr; L5H : R1=H, R2=n Bu, R3=i Pr) were synthesized and used to prepare calcium complexes. The reactions of L1–5H with silylamido calcium precursors (Ca[N(SiMe2R)2]2(THF)2, R=Me or H) at room temperature gave heteroleptic products ( L1, 2 )CaN(SiMe3)2 ( 1 , 2 ), ( L3, 4 )CaN(SiHMe2)2 ( 3 a , 4 a ) and homoleptic complexes ( L3, 5 )2Ca ( D3 , D5 ). NMR and X‐ray analyses proved that these calcium complexes were stabilized through Ca⋅⋅⋅C−Si, Ca⋅⋅⋅H−Si or Ca⋅⋅⋅H−C agostic interactions. Unexpectedly, calcium complexes (( L3–5 )CaN(SiMe3)2) bearing more sterically encumbered ligands of the same type were extremely unstable and underwent C−N bond cleavage processes as a consequence of intramolecular C−H bond activation, leading to the exclusive formation of (E )‐1,2‐bis(8‐isopropylquinol‐2‐yl)ethane.  相似文献   

6.
A cobalt‐catalyzed chelation‐assisted tandem C?H activation/C?C cleavage/C?H cyclization of aromatic amides with alkylidenecyclopropanes is reported. This process allows the sequential formation of two C?C bonds, which is in sharp contrast to previous reports on using rhodium catalysts for the formation of C?N bonds. Here the inexpensive catalyst system exhibits good functional‐group compatibility and relatively broad substrate scope. The desired products can be easily transformed into polycyclic lactones with m‐CPBA. Mechanistic studies revealed that the tandem reaction proceeds through a C?H cobaltation, β‐carbon elimination, and intramolecular C?H cobaltation sequence.  相似文献   

7.
A general strategy for the cleavage and amination of C?C bonds of cycloalkanols has been achieved through visible‐light‐induced photoredox catalysis utilizing a cerium(III) chloride complex. This operationally simple methodology has been successfully applied to a wide array of unstrained cyclic alcohols, and represents the first example of catalytic C?C bond cleavage and functionalization of unstrained secondary cycloalkanols.  相似文献   

8.
A three‐step transformation consisting of 1) addition of electrochemically generated iodosulfonium ions to vinylarenes to give (1‐aryl‐2‐iodoethoxy)sulfonium ions, 2) nucleophilic substitution by subsequently added aromatic compounds to give 1,1‐diaryl‐2‐iodoethane, and 3) elimination of HI with a base to give 1,1‐diarylethenes was developed. The transformation serves as a powerful metal‐ and chemical‐oxidant‐free method for alkenyl C?H/aromatic C?H cross‐coupling.  相似文献   

9.
Cp*‐free cobalt‐catalyzed alkyne annulations by C?H/N?H functionalizations were accomplished with molecular O2 as the sole oxidant. The user‐friendly oxidase strategy proved viable with various internal and terminal alkynes through kinetically relevant C?H cobaltation, providing among others step‐economical access to the anticancer topoisomerase‐I inhibitor 21,22‐dimethoxyrosettacin. DFT calculations suggest that electronic effects control the regioselectivity of the alkyne insertion step.  相似文献   

10.
A previously elusive RuII‐catalyzed N?N bond‐based traceless C?H functionalization strategy is reported. An N‐amino (i.e., hydrazine) group is used for the directed C?H functionalization with either an alkyne or an alkene, affording an indole derivative or olefination product. The synthesis features a broad substrate scope, superior atom and step economy, as well as mild reaction conditions.  相似文献   

11.
Tandem Friedel‐Crafts (FC) and C?H/C?O coupling reactions catalyzed by tris(pentafluorophenyl) borane (B(C6F5)3) were achieved without using any other additive in the absence of solvent. This process can be used for the reactions between a series of dialkylanilines and vinyl ethers with good isolated yields of bis(4‐dialkylaminophenyl) compounds. Based on combined theoretical and experimental studies, the possible reaction mechanism was proposed. B(C6F5)3 can activate the C=C and C?O bond for FC and C?H/C?O coupling reactions respectively. The FC reaction is slow, which is followed by a fast C?H/C?O coupling.  相似文献   

12.
The dual function of the N?F bond as an effective oxidant and subsequent nitrogen source in intramolecular aliphatic C?H functionalization reactions is explored. Copper catalysis is demonstrated to exercise full regio‐ and chemoselectivity control, which opens new synthetic avenues to nitrogenated heterocycles with predictable ring sizes. For the first time, a uniform catalysis manifold has been identified for the construction of both pyrrolidine and piperidine cores. The individual steps of this new copper oxidation catalysis were elucidated by control experiments and computational studies, clarifying the singularity of the N?F function and characterizing the catalytic cycle to be based on a copper(I/II) manifold.  相似文献   

13.
The ferrocene derivative (η5‐Cp)Fe{η5‐C5H3‐1‐(ArNCH)‐2‐(CH2NMe2)} ( 1 ; Ar=2,6‐iPr2C6H3)) reacts diastereoselectively with LiR by carbolithiation and subsequent hydrolysis to give (η5‐Cp)Fe{η5‐C5H3‐1‐(ArHNCHR)‐2‐(CH2NMe2)} ( 3 : R=tBu; 4 : R=Ph; 5 : R=Me) in high yields. For R=tBu, the organolithium derivative (η5‐Cp)Fe{η5‐C5H3‐1‐(ArLiNCHR)‐2‐(CH2NMe2)} ( 2 ) was isolated. Compound 2 reacts with GeCl2?dioxane and SnCl2 to give the metallylene amide chlorides (η5‐Cp)Fe{η5‐C5H3‐1‐(ArMNCHtBu)‐2‐(CH2NMe2)} 6 (M=GeCl) and 7 (M=SnCl), respectively, which each contain three stereogenic centers. The potential of 7 as a ligand in transition‐metal chemistry is demonstrated by formation of its complex (η5‐Cp)Fe{η5‐C5H3‐1‐(ArMNCHtBu)‐2‐(CH2NMe2)} [ 9 , M= Sn(Cl)W(CO)5]. Treatment of 3 with tert‐butyllithium at room temperature causes an unprecedented carbon–carbon bond cleavage whereas under kinetic control, lithiation at the Cp‐3 position takes place, which leads to the isolation of (η5‐Cp)Fe{η5‐C5H3‐1‐(ArHNCHtBu)‐2‐(CH2NMe2)‐3‐SiMe3} ( 10 ).  相似文献   

14.
Nickela‐electrooxidative C?H alkoxylations with challenging secondary alcohols were accomplished in a fully dehydrogenative fashion, thereby avoiding stoichiometric chemical oxidants, with H2 as the only stoichiometric byproduct. The nickela‐electrocatalyzed oxygenation proved viable with various (hetero)arenes, including naturally occurring secondary alcohols, without racemization. Detailed mechanistic investigation, including DFT calculations and cyclovoltammetric studies of a well‐defined C?H activated nickel(III) intermediate, suggest an oxidation‐induced reductive elimination at nickel(III).  相似文献   

15.
The first example of cobalt‐catalyzed oxidative C?H/C?H cross‐coupling between two heteroarenes is reported, which exhibits a broad substrate scope and a high tolerance level for sensitive functional groups. When the amount of Co(OAc)2?4 H2O is reduced from 6.0 to 0.5 mol %, an excellent yield is still obtained at an elevated temperature with a prolonged reaction time. The method can be extended to the reaction between an arene and a heteroarene. It is worth noting that the Ag2CO3 oxidant is renewable. Preliminary mechanistic studies by radical trapping experiments, hydrogen/deuterium exchange experiments, kinetic isotope effect, electron paramagnetic resonance (EPR), and high resolution mass spectrometry (HRMS) suggest that a single electron transfer (SET) pathway is operative, which is distinctly different from the dual C?H bond activation pathway that the well‐described oxidative C?H/C?H cross‐coupling reactions between two heteroarenes typically undergo.  相似文献   

16.
17.
A fluoride‐anion‐induced, regioselective ring expansion of benzocyclic ketones and α‐aryl cycloketones has been developed via insertion of arynes into unactivated benzylic C?C bonds. This reaction provides a straightforward, transition‐metal‐free avenue to prepare medium ring‐fused benzocarbocycles by creating “noble” seven‐, eight‐, and nine‐membered rings. Applications of this method in the creation of medium‐sized exocyclic and inner benzocyclic olefins, nine‐membered lactones, and lactams are described.  相似文献   

18.
《化学:亚洲杂志》2017,12(9):978-981
Although numerous reports exist on strained C−C bond cleavage reactions in aryl substitutions, the cleavage methodology for unstrained C−C bonds in alkylation reactions has not yet been established. We found that unstrained allylic C−C bonds can be cleaved using α‐radicals to form C(sp3)−C(sp3) bonds in the presence of a copper catalyst. In this reaction, the property of leaving and loading radicals is very important for radical fragmentations. In this paper, we investigated the effects of these properties in cleavage reactions for unstrained C−C bonds.  相似文献   

19.
Because the construction of the C?C bond is one of the most significant reactions in organic chemistry, the development of an efficient strategy has attracted much attention throughout the synthetic community. Among various protocols to form C?C bonds, organoboron compounds are not just limited to stoichiometric reagents, but have also made great achievements as catalysts because of the easy modification of the electronic and steric impacts on the boron center. This review presents recent developments of boron‐based catalysts applied in the field of C?C bond‐formation reactions, which are classified into four kinds on the basis of the type of boron catalyst: 1) highly Lewis acidic borane, B(C6F5)3; 2) organoboron acids, RB(OH)2, and their ester derivatives; 3) borenium ions, (R2BL)X; and 4) other miscellaneous kinds.  相似文献   

20.
A set of (3,3′)‐bis(1‐Ph‐2‐R‐1H‐2,1‐benzazaborole) compounds, in which R=tBu (Bab‐tBu)2 , R=Dipp (Bab‐Dipp)2 or R=tBu and Dipp (Bab‐Dipp)(Bab‐tBu) , was synthesized and fully characterized using 1H, 11B, 13C, and 15N NMR spectroscopy as well as single‐crystal X‐ray diffraction analysis. The central HC(sp3)?C(sp3)H bond with restricted rotation at the junction of both 1H‐2,1‐benzazaborole rings displayed an intriguing reactivity. It was demonstrated that this bond is easily mesolytically cleaved using alkali metals to form the respective aromatic 1Ph‐2R‐1H‐2,1‐benzazaborolyl anions M+(THF) n (Bab‐tBu)? (M=Li, Na, K) and K+(THF) n (Bab‐Dipp)? . Furthermore, the central HC(sp3)?C(sp3)H bond of bis(1H‐2,1‐benzazaborole)s is also homolytically cleaved either by heating or photochemical means, giving corresponding 1Ph‐2R‐1H‐2,1‐benzazaborolyl radicals (Bab‐tBu). and (Bab‐Dipp)., which rapidly self‐terminate. Nevertheless, their formation was unambiguously established by NMR analysis of the reaction mixtures containing products of the self‐termination of the radicals after heating or irradiation. (Bab‐Dipp). radical was also characterized using EPR spectroscopy. Importantly, it turned out that the essentially non‐polarized HC(sp3)?C(sp3)H bond in (Bab‐tBu)2 is also cleaved heterolytically with 2 equiv of MeLi, giving the mixture of Li+(SOL) n (Bab‐tBu)? (SOL=THF or Et2O) and lithium methyl‐substituted borate complex Li+(SOL) n (Bab‐tBu‐Me)? in a diastereoselective fashion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号