首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new class of nitroguanidyl‐functionalized nitrogen‐rich materials derived from 1,3,5‐triazine and 1,2,4,5‐tetrazine was synthesized through reactions between N‐nitroso‐N′‐alkylguanidines and the hydrazine derivatives of 1,3,5‐triazine or 1,2,4,5‐tetrazine. These compounds were fully characterized using multinuclear NMR and IR spectroscopies, elemental analysis, and differential scanning calorimetry (DSC). The heats of formation for all compounds were calculated with Gaussian 03 and then combined with experimental densities to determine the detonation pressures (P) and velocities (Dv) of the energetic materials. Interestingly, some of the compounds exhibit an energetic performance (P and Dv) comparable to that of RDX, thus holding promise for application as energetic materials.  相似文献   

2.
This study presents the first synthesis and characterization of a new high energy compound [1,2,3,4]tetrazino[5,6‐e][1,2,3,4]tetrazine 1,3,6,8‐tetraoxide (TTTO). It was synthesized in ten steps from 2,2‐bis(tert‐butyl‐NNO‐azoxy)acetonitrile. The synthetic strategy was based on the sequential closure of two 1,2,3,4‐tetrazine 1,3‐dioxide rings by the generation of oxodiazonium ions and their intramolecular coupling with tert‐butyl‐NNO‐azoxy groups. The TTTO structure was confirmed by single‐crystal X‐ray.  相似文献   

3.
Fluorinated alkyl groups are important motifs in bioactive compounds, positively influencing pharmacokinetics, potency and conformation. The oxidative difluorination of alkenes represents an important strategy for their preparation, yet current methods are limited in their alkene‐types and tolerance of electron‐rich, readily oxidized functionalities, as well as in their safety and scalability. Herein, we report a method for the difluorination of a number of unactivated alkene‐types that is tolerant of electron‐rich functionality, giving products that are otherwise unattainable. Key to success is the electrochemical generation of a hypervalent iodine mediator using an “ex‐cell” approach, which avoids oxidative substrate decomposition. The more sustainable conditions give good to excellent yields in up to decagram scales.  相似文献   

4.
Synthesis of alternating pyridine–pyrrole molecular strands composed of two electron‐rich pyrrole units (donors) sandwiched between three pyridinic cores (acceptors) is described. The envisioned strategy was a smooth electrosynthesis process involving ring contraction of corresponding tripyridyl–dipyridazine precursors. 2,6‐Bis[6‐(pyridazin‐3‐yl)]pyridine ligands 2 a – c bearing pyridine residues at the terminal positions were prepared in suitable quantities by a Negishi metal cross‐coupling procedure. The yields of heterocyclic coupling between 2‐pyridyl zinc bromide reagents 12 a – c and 2,6‐bis(6‐trifluoromethanesulfonylpyridazin‐3‐yl)pyridine increased from 68 to 95 % following introduction of electron‐donating methyl groups on the metallated halogenopyridine units. Favorable conditions for preparative electrochemical reduction of tripyridyl–dipyridazines 2 b , c were established in THF/acetate buffer (pH 4.6)/acetonitrile to give the targeted 2,6‐bis[5‐(pyridin‐2‐yl)pyrrol‐2‐yl]pyridines 1 b and 1 c in good yields. The absorption behavior of the donor–acceptor tripyridyl–dipyrrole ligands was evaluated and compared to theoretical calculations. Highly fluorescent properties of these chromophores were found (νem≈2×104 cm?1 in MeOH and CH2Cl2), and both pyrrolic ligands exhibit a remarkable quantum yield in CH2Cl2 (?f=0.10). Structural studies in the solid state established the preferred cis conformation of the dipyrrolic ligands, which adopting a planar arrangement with an embedded molecule of water having a complexation energy exceeding 10 kcal mol?1. The ability of the tripyridyl–dipyrrole to complex two copper(II) ions in a pentacoordinate square was investigated.  相似文献   

5.
The design, synthesis and self‐assembly of new symmetrical 3,6‐bis(4‐(3,4,5‐tris(dodecyloxy)benzoate)phenyl)‐1,2,4,5‐tetrazine were described. The novel gelator, sym‐tetrazine, was prepared by addition reaction of 4‐cyanophenol with hydrazine monohydrate followed by oxidation reaction to afford the corresponding 3,6‐bis(4‐hydroxyphenyl)‐1,2,4,5‐tetrazine which was then subjected to esterification reaction with 3,4,5‐tris(dodecyloxy)benzoic acid. The chemical structure of the sym‐tetrazine gelator was confirmed by elemental analysis, fourier‐transform infrared spectroscopy (FT‐IR), and nuclear magnetic resonance (1H‐ and 13C‐NMR) spectral measurements. It was confirmed to exhibit relatively strong gelation ability to produce supramolecular assemblies in several polar alcoholic organic solvents, such as butanol, octanol, and 1,6‐dihydroxyhexane. The π‐π stacking and van der Waals mediated self‐assembly of tetrazine‐based organogelator were studied by scanning electron microscopy images of the xerogel to reveal that the obtained organogel consists of fibrillar aggregates. Investigation of FT‐IR and concentration‐dependent 1H‐NMR spectra confirm that the intermolecular van der Waals interactions and π‐π stacking were the key driving forces for self‐assembly during gelation process of s‐tetrazine molecules.  相似文献   

6.
7.
8.
We have developed a unified strategy for preparing a variety of imidazo‐fused N‐heteroaromatic compounds through regiospecific electrochemical (3+2) annulation reaction of heteroarylamines with tethered internal alkynes. The electrosynthesis employs a novel tetraarylhydrazine as the catalyst, has a broad substrate scope, and obviates the need for transition‐metal catalysts and oxidizing reagents.  相似文献   

9.
We demonstrated, for the first time, that 3,6‐bis(3‐hexylthien‐2‐yl)‐s‐tetrazine (TTz) with hexyl group at the 3‐position of thiophene rings can be prepared using a modified sulfur‐assisted Pinner synthesis. Although the hexyl group creates large steric hindrance to the tetrazine ring formation reaction, and the reaction under a traditional condition only produces trace amount of the target product, the yield of this reaction under a modified reaction condition using anhydrous hydrazine at 68 °C can reach 65%. Two new copolymers of the resulting TTz and hexyl‐ or 2‐ethylhexyl‐substituted cyclepentadithiophene have been prepared. The polymers show a broader light absorption in film than in solution attributing to the large distribution of effective conjugation length of polymer chain due to the existence of both cis‐ and trans‐orientations of the 3‐hexylthiophene units in the planar polymer chain in solid state. Although the polymers show a narrow band gap and a deep HOMO level, which are desirable for generating an efficient light absorption and a larger open circuit voltage (Voc) of the resulting solar cell devices, the device performance is not as good as expected. It is attributed to the random distribution of the cis‐ and trans‐conformations along the polymer chain. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   

10.
The synthesis and characterization of electron‐poor thiophene 1,1‐dioxides bearing cyanated phenyl groups are reported. The electron‐accepting nature of these compounds was evaluated by cyclic voltammetry, and highly reversible and facile reductions were observed for several derivatives. Moreover, some of the reduced thiophene dioxides form colorful anions, which were investigated spectroelectrochemically. Photoluminescence spectra of the electron‐deficient sulfones were measured in CH2Cl2, and they emit in the blue‐green region with significant variation in the quantum yield depending on the aryl substituents. By expanding the degree of substitution on the phenyl rings, quantum yields up to 34 % were obtained. X‐ray diffraction data are reported for two of the thiophene 1,1‐dioxides, and the electronic structure was probed for all synthesized derivatives through DFT calculations. The dioxides were also examined as electron relays in a photocatalytic water reduction reaction, and they showed potential to boost the efficiency.  相似文献   

11.
An unprecedented reactivity profile of biochemically relevant R‐benzofuroxan (R=H, Me, Cl), with high structural diversity and molecular complexity on a selective {Ru(acac)2} (acac=acetylacetonate) platform, in conjugation with EtOH solvent mediation, is revealed. This led to the development of monomeric [RuIII(acac)2(L1R)] ( 1 a – 1 c ; L1R=2‐nitrosoanilido derivatives) and dimeric [{RuII(acac)2}2(L2R)] ( 2 a – 2 b ; L2R=(1E,2E)‐N1,N2‐bis(2‐nitrosophenyl)ethane‐1,2‐diimine derivatives) complexes in one pot with a change in the metal redox conditions. The functionalization of benzofuroxan in 1 and 2 implied in situ reduction of N=O to NH? in the former and solvent‐assisted multiple N?C coupling in the latter. The aforesaid transformation processes were authenticated through structural elucidation of representative complexes, and evaluated by their spectroscopic/electrochemical features, along with C2D5OD labeling and monitoring of the impact of substituents (R) in the benzofuroxan framework on the product distribution process. The noninnocent potential of newly developed L1 and L2 in 1 and 2 , respectively, was also probed by spectroelectrochemistry in combination with DFT calculations.  相似文献   

12.
A series of thiacalix[n]dithiothiophenes (n=4–10) was prepared by a facile method and X‐ray analysis was used to determine the molecular structures of square‐ (4‐mer) and pentagonal‐shaped macrocycles (5‐mer). In the cyclic voltammograms, reversible multielectron redox processes, which are due to electronic delocalization, were observed at low oxidation potentials. The cyclic 4‐mer acted as a “Janus‐head” cavitand for two C60 molecules, whereas the 5‐ and 6‐mer formed stable 1:1 complexes with C60 .  相似文献   

13.
A new unsymmetrical s‐tetrazine derivative, namely 4‐({2‐[6‐(3,5‐dimethyl‐1H‐pyrazol‐1‐yl)‐1,2,4,5‐tetrazin‐3‐yl]hydrazin‐1‐ylidene}methyl)phenol (DPHM), C14H14N8O, was synthesized based on 3‐(3,5‐dimethylpyrazol‐1‐yl)‐6‐hydrazinyl‐s‐tetrazine (DPHT). The structure was characterized by elemental analysis and single‐crystal X‐ray diffraction. Crystal structure determination shows that DPHM crystallizes in the monoclinic P21/c space group with high coplanarity and a zigzag layered structure. In addition, its thermal behaviour was investigated by DSC and TG–DTG methods. The thermal safety of DPHM was evaluated by self‐accelerating decomposition temperature (TSADT), critical temperature of thermal explosion (Tb), entropy of activation (ΔS), enthalpy of activation (ΔH) and free energy of activation (ΔG). Meanwhile, the kinetic parameters and specific heat capacity of DPHM were also determined. The results show that DPHM has better stability and detonation properties than 3‐(2‐benzylidenehydrazin‐1‐yl)‐6‐(3,5‐dimethylpyrazol‐1‐yl)‐s‐tetrazine (DAHBTz), due to the introduction of a hydroxy group, which increases the number of hydrogen‐bond interactions and improves the stability and density of DPHM. This study demonstrates that the performance of an explosive can be optimized through structural modification.  相似文献   

14.
15.
Substituted cyclopropenes have recently attracted attention as stable “mini‐tags” that are highly reactive dienophiles with the bioorthogonal tetrazine functional group. Despite this interest, the synthesis of stable cyclopropenes is not trivial and their reactivity patterns are poorly understood. Here, the synthesis and comparison of the reactivity of a series of 1‐methyl‐3‐substituted cyclopropenes with different functional handles is described. The rates at which the various substituted cyclopropenes undergo Diels–Alder cycloadditions with 1,2,4,5‐tetrazines were measured. Depending on the substituents, the rates of cycloadditions vary by over two orders of magnitude. The substituents also have a dramatic effect on aqueous stability. An outcome of these studies is the discovery of a novel 3‐amidomethyl substituted methylcyclopropene tag that reacts twice as fast as the fastest previously disclosed 1‐methyl‐3‐substituted cyclopropene while retaining excellent aqueous stability. Furthermore, this new cyclopropene is better suited for bioconjugation applications and this is demonstrated through using DNA templated tetrazine ligations. The effect of tetrazine structure on cyclopropene reaction rate was also studied. Surprisingly, 3‐amidomethyl substituted methylcyclopropene reacts faster than trans‐cyclooctenol with a sterically hindered and extremely stable tert‐butyl substituted tetrazine. Density functional theory calculations and the distortion/interaction analysis of activation energies provide insights into the origins of these reactivity differences and a guide to the development of future tetrazine coupling partners. The newly disclosed cyclopropenes have kinetic and stability advantages compared to previously reported dienophiles and will be highly useful for applications in organic synthesis, bioorthogonal reactions, and materials science.  相似文献   

16.
The first electrochemical dehydrogenative C?S bond formation leading to thienoacene derivatives is described. Several thienoacene derivatives were synthesized by dehydrogenative C?H/S?H coupling. The addition of nBu4NBr, which catalytically promoted the reaction as a halogen mediator, was essential.  相似文献   

17.
3,4‐Diaminofurazan was conveniently converted into energetic salts of 3,4‐dinitraminofurazan that were paired with nitrogen‐rich cations in fewer than three steps. Seven energetic salts were prepared and fully characterized by multinuclear (1H, 13C) NMR and IR spectroscopy, differential scanning calorimetry (DSC), and elemental analysis. In addition, the structures of the ammonium salt ( 2 ), hydrazinium salt ( 4 ), hydroxylammonium salt ( 5 ), aminoguanidinium salt ( 7 ), diaminoguanidinium salt ( 8 ) and triaminoguanidinium salt of 3,4‐dinitraminofurazan ( 9 ) were further confirmed by single‐crystal X‐ray diffraction. The densities of these salts were between 1.673 ( 8 ) and 1.791 g cm?3 ( 5 ), whilst their oxygen balances were between ?48.20 % ( 9 ) and ?6.25 % ( 5 ). These salts showed high thermal stabilities, with decomposition temperatures between 179 ( 5 ) and 283 °C ( 6 ). Their sensitivities towards impact and friction were measured by BAM equipment to be between <1 J ( 9 ) and >40 J ( 6 – 8 ) and 64 N ( 9 ) and >360 N ( 6 ), respectively. The detonation performance of these compounds, which was calculated by using the EXPLO5 program, revealed detonation pressures of between 28.0 ( 6 ) and 40.5 GPa ( 5 ) and detonation velocities of between 8404 ( 6 ) and 9407 m s?1 ( 5 ).  相似文献   

18.
Developing methodologies for on‐demand control of the release of a molecular guest requires the rational design of stimuli‐responsive hosts with functional cavities. While a substantial number of responsive metallacages have already been described, the case of coordination‐tweezers has been less explored. Herein, we report the first example of a redox‐triggered guest release from a metalla‐assembled tweezer. This tweezer incorporates two redox‐active panels constructed from the electron‐rich 9‐(1,3‐dithiol‐2‐ylidene)fluorene unit that are facing each other. It dimerizes spontaneously in solution and the resulting interpenetrated supramolecular structure can dissociate in the presence of an electron‐poor planar unit, forming a 1:1 host–guest complex. This complex dissociates upon tweezer oxidation/dimerization, offering an original redox‐triggered molecular delivery pathway.  相似文献   

19.
20.
In consideration of the importance of nitrogen‐containing heterocycles in both medicinal and material chemistry, herein, we intend to summarize the most recent advances about their synthesis by electrochemical dehydrogenation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号