首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One route to high density and high performance energetic materials based on 1,2,4,5‐tetrazine is the introduction of 2,4‐di‐N‐oxide functionalities. Based on several examples and through theoretical analysis, the strategy of regioselective introduction of these moieties into 1,2,4,5‐tetrazines has been developed. Using this methodology, various new tetrazine structures containing the N‐oxide functionality were synthesized and fully characterized using IR, NMR, and mass spectroscopy, elemental analysis, and single‐crystal X‐ray analysis. Hydrogen peroxide (50 %) was used very effectively in lieu of the usual 90 % peroxide in this system to generate N‐oxide tetrazine compounds successfully. Comparison of the experimental densities of N‐oxide 1,2,4,5‐tetrazine compounds with their 1,2,4,5‐tetrazine precursors shows that introducing the N‐oxide functionality is a highly effective and feasible method to enhance the density of these materials. The heats of formation for all compounds were calculated with Gaussian 03 (revision D.01) and these values were combined with measured densities to calculate detonation pressures (P) and velocities (νD) of these energetic materials (Explo 5.0 v. 6.01). The new oxygen‐containing tetrazines exhibit high density, good thermal stability, acceptable oxygen balance, positive heat of formation, and excellent detonation properties, which, in some cases, are superior to those of 1,3,5‐tritnitrotoluene (TNT), 1,3,5‐trinitrotriazacyclohexane (RDX), and octahydro‐1,3,5,7‐tetranitro‐1,3,5,7‐tetrazocine (HMX).  相似文献   

2.
This study presents the synthesis and characterization of the oxidation products of 3,6‐diazido‐1,2,4,5‐tetrazine ( 1 ) and 6‐amino‐[1,5‐b ]tetrazolo‐1,2,4,5‐tetrazine ( 2 ). 3,6‐Diazido‐1,2,4,5‐tetrazine‐1,4‐dioxide was produced from oxidation with peroxytrifluoroacetic acid, and more effectively using hypofluorous acid, and 2 can be oxidized to two different products, 6‐amino‐[1,5‐b]tetrazolo‐1,2,4,5‐tetrazine mono‐N‐oxide and di‐N‐oxide. These N‐oxide compounds display promising performance properties as energetic materials.  相似文献   

3.
A facile, efficient and metal‐free synthetic approach to 3‐monosubstituted unsymmetrical 1,2,4,5‐tetrazines is presented. Dichloromethane (DCM) is for the first time recognized as a novel reagent in the synthetic chemistry of tetrazines. Using this novel approach 11 3‐aryl/alkyl 1,2,4,5‐tetrazines were prepared in excellent yields (up to 75 %). The mechanism of this new reaction, including the role of DCM in the tetrazine ring formation, has been investigated by 13C labeling of DCM, and is also presented and discussed as well as the photophysical and electrochemical properties.  相似文献   

4.
Several new energetic ethyl ethers of 1,2,4,5‐tetrazine have been synthesized. These molecules display good thermal stability, good oxygen balance, and high densities. Included in these studies are a 2,2,2‐trinitroethoxy 1,2,4,5‐tetrazine and two fluorodinitroethoxy 1,2,4,5‐tetrazines. One of these compounds was converted into the di‐N‐oxide derivative. The sensitivity of these materials towards destructive stimuli was determined, and overall the materials show promising energetic performance properties.  相似文献   

5.
Click chemistry at a tetrazine core is useful for bioorthogonal labeling and crosslinking. Introduced here are two new classes of doubly clickable s‐aryl tetrazines synthesized by Cu‐catalyzed cross‐coupling. Homocoupling of o‐brominated s‐aryl tetrazines leads to bis(tetrazine)s structurally characterized by tetrazine cores arranged face‐to‐face. [N]8 π‐stacking interactions are essential to the conformation. Upon inverse electron demand Diels–Alder (iEDDA) cycloaddition, the bis(tetrazine)s produce a unique staple structure. The o‐azidation of s‐aryl tetrazines introduces a second proximal intermolecular clickable function that leads to double click chemistry opportunities. The stepwise introduction of fluorophores and then iEDDA cycloaddition, including bioconjugation to antibodies, was achieved on this class of tetrazines. This method extends to (thio)etherification, phosphination, trifluoromethylation and the introduction of various bioactive nitrogen‐based heterocycles.  相似文献   

6.
In spite of the wide application potential of 1,2,4,5‐tetrazines, particularly in live‐cell and in vivo imaging, a major limitation has been the lack of practical synthetic methods. Here we report the in situ synthesis of (E)‐3‐substituted 6‐alkenyl‐1,2,4,5‐tetrazine derivatives through an elimination–Heck cascade reaction. By using this strategy, we provide 24 examples of π‐conjugated tetrazine derivatives that can be conveniently prepared from tetrazine building blocks and related halides. These include tetrazine analogs of biological small molecules, highly conjugated buta‐1,3‐diene‐substituted tetrazines, and a diverse array of fluorescent probes suitable for live‐cell imaging. These highly conjugated probes show very strong fluorescence turn‐on (up to 400‐fold) when reacted with dienophiles such as cyclopropenes and trans‐cyclooctenes, and we demonstrate their application for live‐cell imaging. This work provides an efficient and practical synthetic methodology for tetrazine derivatives and will facilitate the application of conjugated tetrazines, particularly as fluorogenic probes for live‐cell imaging.  相似文献   

7.
Strain‐promoted inverse electron‐demand Diels–Alder cycloaddition (SPIEDAC) reactions between 1,2,4,5‐tetrazines and strained dienophiles, such as bicyclononynes, are among the fastest bioorthogonal reactions. However, the synthesis of 1,2,4,5‐tetrazines is complex and can involve volatile reagents. 1,2,4‐Triazines also undergo cycloaddition reactions with acyclic and unstrained dienophiles at elevated temperatures, but their reaction with strained alkynes has not been described. We postulated that 1,2,4‐triazines would react with strained alkynes at low temperatures and therefore provide an alternative to the tetrazine cycloaddition reaction for use in in vitro or in vivo labelling experiments. We describe the synthesis of a 1,2,4‐triazin‐3‐ylalanine derivative fully compatible with the fluorenylmethyloxycarbonyl (Fmoc) strategy for peptide synthesis and demonstrate its reaction with strained bicyclononynes at 37 °C with rates comparable to the reaction of azides with the same substrates. The synthetic route to triazinylalanine is readily adaptable to late‐stage functionalization of other probe molecules, and the 1,2,4‐triazine‐SPIEDAC therefore has potential as an alternative to tetrazine cycloaddition for applications in cellular and biochemical studies.  相似文献   

8.
The photophysical and electrochemical properties of tetrazines substituted by linear 2,3‐naphtalimide antennas and/or adamantane groups specifically dedicated to host–guest interactions with cyclodextrins are studied both in organic and aqueous media. In acetonitrile solvent, the reduction potential of tetrazine leading to the anion radical is shifted, depending on the electron‐withdrawing power of the substituent of the tetrazines. Due to the hydrophobic character of these compounds, their solubilization in aqueous solution is achieved successively in presence of either β‐cyclodextrins or gold nanoparticules modified by β‐cyclodextrins. We demonstrate that the formation of the inclusion compound tetrazine–cyclodextrin allows the solubilization of the tetrazines in aqueous solution. The supramolecular assemblies obtained in water retain tetrazine's emission properties, yielding a yellow fluorescence.  相似文献   

9.
The unstrained S‐allyl cysteine amino acid was site‐specifically installed on apoptosis protein biomarkers and was further used as a chemical handle and ligation partner for 1,2,4,5‐tetrazines by means of an inverse‐electron‐demand Diels–Alder reaction. We demonstrate the utility of this minimal handle for the efficient labeling of apoptotic cells using a fluorogenic tetrazine dye in a pre‐targeting approach. The small size, easy chemical installation, and selective reactivity of the S‐allyl handle towards tetrazines should be readily extendable to other proteins and biomolecules, which could facilitate their labeling within live cells.  相似文献   

10.
The unstrained S‐allyl cysteine amino acid was site‐specifically installed on apoptosis protein biomarkers and was further used as a chemical handle and ligation partner for 1,2,4,5‐tetrazines by means of an inverse‐electron‐demand Diels–Alder reaction. We demonstrate the utility of this minimal handle for the efficient labeling of apoptotic cells using a fluorogenic tetrazine dye in a pre‐targeting approach. The small size, easy chemical installation, and selective reactivity of the S‐allyl handle towards tetrazines should be readily extendable to other proteins and biomolecules, which could facilitate their labeling within live cells.  相似文献   

11.
The synthesis and energetic properties of a novel N‐oxide high‐nitrogen compound, 6‐amino‐tetrazolo[1,5‐b]‐1,2,4,5‐tetrazine‐7‐N‐oxide, are described. Resulting from the N‐oxide and fused rings system, this molecule exhibits high density, excellent detonation properties, and acceptable impact and friction sensitivities, which suggests potential applications as an energetic material. Compared to known high‐nitrogen compounds, such as 3,6‐diazido‐1,2,4,5‐tetrazine (DiAT), 2,4,6‐tri(azido)‐1,3,5‐triazine (TAT), and 4,4′,6,6′‐tetra(azido)azo‐1,3,5‐triazine (TAAT), a marked performance and stability increase is seen. This supports the superior qualities of this new compound and the advantage of design strategy.  相似文献   

12.
The development of fluorogenic reactions which lead to the formation of fluorescent products from two nonfluorescent starting materials is highly desirable, but challenging. Reported herein is a new concept of fluorescent product formation upon the inverse electron‐demand Diels–Alder reaction of 1,2,4,5‐tetrazines with particular trans ‐cyclooctene (TCO) isomers. In sharp contrast to known fluorogenic reagents the presented chemistry leads to the rapid formation of unprecedented fluorescent 1,4‐dihydropyridazines so that the fluorophore is built directly upon the chemical reaction. Attachment of an extra fluorophore moiety is therefore not needed. The photochemical properties of the resulting dyes can be easily tuned by changing the substitution pattern of the starting 1,2,4,5‐tetrazine. We support the claim with NMR measurements and rationalize the data by computational study. Cell‐labeling experiments were performed to demonstrate the potential of the fluorogenic reaction for bioimaging.  相似文献   

13.
O6‐Corona[3]arene[3]tetraazines, a new class of macrocyclic compounds, were synthesized efficiently in a one‐pot reaction from the nucleophilic aromatic substitution reaction between 1,4‐dihydroxybenzene derivatives and 3,6‐dichlorotetrazine in warm acetonitrile. In the crystalline structure, the resulting macrocycles adopt highly symmetric structures of a regular hexagonal cavity with all bridging oxygen atoms and tetrazine rings located on the same plane with phenylene units orthogonally orientated. The constitutional aromatic rings are able to rotate around the macrocyclic annulus, depending on the steric effect of the substituents and temperature, in solution. The electron‐deficient nature revealed by cyclic voltammetry, differential pulse voltammetry, and characteristic absorbances at a visible region show the O6‐corona[3]arene[3]tetrazines to be suitable macrocyclic receptors for electron‐rich guests.  相似文献   

14.
Reported here are the syntheses, conformational structures, electrochemical properties, and noncovalent anion binding of corona[5]arenes. A (3+2) fragment coupling reaction proceeded efficiently under mild reaction conditions to produce a number of novel heteroatom‐ and methylene‐bridged corona[3]arene[2]tetrazine macrocycles. Selective oxidation of the sulfur atom between two phenylene rings afforded sulfoxide‐ and sulfone‐linked corona[5]arenes in good yields. All corona[5]arenes synthesized adopted similar 1,2,4‐alternate conformational structures, forming pentagonal cavities. The cavity sizes and the electronic properties such as redox potentials, were measured with CV and DPV, and were influenced by the different bridging units. As electron‐deficient macrocycles, the acquired corona[3]arene[2]tetrazines served as highly selective hosts, forming complexes with the hydrogen‐bonded dimer of dihydrogen phosphate through cooperative anion–π interactions.  相似文献   

15.
O6‐Corona[3]arene[3]tetraazines, a new class of macrocyclic compounds, were synthesized efficiently in a one‐pot reaction from the nucleophilic aromatic substitution reaction between 1,4‐dihydroxybenzene derivatives and 3,6‐dichlorotetrazine in warm acetonitrile. In the crystalline structure, the resulting macrocycles adopt highly symmetric structures of a regular hexagonal cavity with all bridging oxygen atoms and tetrazine rings located on the same plane with phenylene units orthogonally orientated. The constitutional aromatic rings are able to rotate around the macrocyclic annulus, depending on the steric effect of the substituents and temperature, in solution. The electron‐deficient nature revealed by cyclic voltammetry, differential pulse voltammetry, and characteristic absorbances at a visible region show the O6‐corona[3]arene[3]tetrazines to be suitable macrocyclic receptors for electron‐rich guests.  相似文献   

16.
Reaction of 3,6‐disubstituted‐1,2,4,5‐tetrazines with water and PEt3 forms the corresponding 1,4‐dihydrotetrazine and OPEt3. Thus PEt3, as a stoichiometric reductant, reduces water, and the resulting two reducing equivalents serve to doubly hydrogenate the tetrazine. A variety of possible initial interactions between electron‐deficient tetrazine and electron‐rich PR3, including a charge transfer complex, were evaluated by density functional calculations which revealed that the energy of all these make them spectroscopically undetectable at equilibrium, but one of these is nevertheless suggested as the intermediate in the observed redox reaction. The relationship of this to the Mitsunobu reaction, which absorbs the components of water evolved in the conversion of alcohol and carboxylic acid to ester, with desirable inversion at the alcohol carbon, is discussed. This enables a modified Mitsunobu reaction, with tetrazine replacing EtO2CN=NCO2Et (DEAD), which has the advantage that dihydrotetrazine can be recycled to tetrazine by oxidation with O2, something impossible with the hydrogenated DEAD. For this tetrazine version, a betaine‐like intermediate is undetectable, but its protonated form is characterized, including by X‐ray structure and NMR spectroscopy.  相似文献   

17.

The reactions of 3,6-disubstituted and azoloannulated 1,2,4,5-tetrazines containing heterocyclic leaving groups with S-nucleophiles were studied. The methods of introduction of functionalized thiols, including thiol derivatives of 1,7- and 1,2-dicarba-closo-dodecaboranes, into the tetrazine ring were developed. It was established for the first time that, instead of replacement of a leaving group in the tetrazine ring, the attack of S-nucleophile at the unsubstituted carbon atom occurs in the case of imidazo[1,2-b][1,2,4,5]tetrazines to form previously unknown products of nucleophilic substitution of the hydrogen atom.

  相似文献   

18.
Inverse electron‐demand Diels–Alder cycloadditions (iEDDAC) between tetrazines and strained alkenes/alkynes have emerged as essential tools for studying and manipulating biomolecules. A light‐triggered version of iEDDAC (photo‐iEDDAC) is presented that confers spatio‐temporal control to bioorthogonal labeling in vitro and in cellulo. A cyclopropenone‐caged dibenzoannulated bicyclo[6.1.0]nonyne probe (photo‐DMBO) was designed that is unreactive towards tetrazines before light‐activation, but engages in iEDDAC after irradiation at 365 nm. Aminoacyl tRNA synthetase/tRNA pairs were discovered for efficient site‐specific incorporation of tetrazine‐containing amino acids into proteins in living cells. In situ light activation of photo‐DMBO conjugates allows labeling of tetrazine‐modified proteins in living E. coli. This allows proteins in living cells to be modified in a spatio‐temporally controlled manner and may be extended to photo‐induced and site‐specific protein labeling in animals.  相似文献   

19.
Substituted cyclopropenes have recently attracted attention as stable “mini‐tags” that are highly reactive dienophiles with the bioorthogonal tetrazine functional group. Despite this interest, the synthesis of stable cyclopropenes is not trivial and their reactivity patterns are poorly understood. Here, the synthesis and comparison of the reactivity of a series of 1‐methyl‐3‐substituted cyclopropenes with different functional handles is described. The rates at which the various substituted cyclopropenes undergo Diels–Alder cycloadditions with 1,2,4,5‐tetrazines were measured. Depending on the substituents, the rates of cycloadditions vary by over two orders of magnitude. The substituents also have a dramatic effect on aqueous stability. An outcome of these studies is the discovery of a novel 3‐amidomethyl substituted methylcyclopropene tag that reacts twice as fast as the fastest previously disclosed 1‐methyl‐3‐substituted cyclopropene while retaining excellent aqueous stability. Furthermore, this new cyclopropene is better suited for bioconjugation applications and this is demonstrated through using DNA templated tetrazine ligations. The effect of tetrazine structure on cyclopropene reaction rate was also studied. Surprisingly, 3‐amidomethyl substituted methylcyclopropene reacts faster than trans‐cyclooctenol with a sterically hindered and extremely stable tert‐butyl substituted tetrazine. Density functional theory calculations and the distortion/interaction analysis of activation energies provide insights into the origins of these reactivity differences and a guide to the development of future tetrazine coupling partners. The newly disclosed cyclopropenes have kinetic and stability advantages compared to previously reported dienophiles and will be highly useful for applications in organic synthesis, bioorthogonal reactions, and materials science.  相似文献   

20.
A new class of nitroguanidyl‐functionalized nitrogen‐rich materials derived from 1,3,5‐triazine and 1,2,4,5‐tetrazine was synthesized through reactions between N‐nitroso‐N′‐alkylguanidines and the hydrazine derivatives of 1,3,5‐triazine or 1,2,4,5‐tetrazine. These compounds were fully characterized using multinuclear NMR and IR spectroscopies, elemental analysis, and differential scanning calorimetry (DSC). The heats of formation for all compounds were calculated with Gaussian 03 and then combined with experimental densities to determine the detonation pressures (P) and velocities (Dv) of the energetic materials. Interestingly, some of the compounds exhibit an energetic performance (P and Dv) comparable to that of RDX, thus holding promise for application as energetic materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号