首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two microextraction techniques – liquid phase microextraction based on solidification of a floating organic drop (LPME‐SFO) and dispersive liquid–liquid microextraction combined with a solidification of a floating organic drop (DLLME‐SFO) – are explored for benzene, toluene, ethylbenzene and o‐xylene sampling and preconcentration. The investigation covers the effects of extraction solvent type, extraction and disperser solvents' volume, and the extraction time. For both techniques 1‐undecanol containing n‐heptane as internal standard was used as an extracting solvent. For DLLME‐SFO acetone was used as a disperser solvent. The calibration curves for both techniques and for all the analytes were linear up to 10 μg/mL, correlation coefficients were in the range 0.997–0.998, enrichment factors were from 87 for benzene to 290 for o‐xylene, detection limits were from 0.31 and 0.35 μg/L for benzene to 0.15 and 0.10 μg/L for o‐xylene for LPME‐SFO and DLLME‐SFO, respectively. Repeatabilities of the results were acceptable with RSDs up to 12%. Being comparable with LPME‐SFO in the analytical characteristics, DLLME‐SFO is superior to LPME‐SFO in the extraction time. A possibility to apply the proposed techniques for volatile aromatic hydrocarbons determination in tap water and snow was demonstrated.  相似文献   

2.
The first results of the complexing ability of cyclobis-(paraquat-p-phenylene) as supramolecular host with different aromatic volatile organic compounds are presented. The formation constants of cyclobis(paraquat-p-phenylene) with toluene and halogenobenzenes were determined in aqueous solution by static headspace associated with gas chromatography and compared with the ones obtained by cyclodextrins. The data indicated the formation of 1:1 inclusion compounds in both cases. The results underlined a greater complexation ability for cyclobis(paraquat-p-phenylene) which was confirmed by a theoretical study.  相似文献   

3.
Pulsed glow discharge (PGD) coupled to time of flight mass spectrometry (TOFMS) has been investigated for volatile organic compound (VOC) identification and determination. Optimization of PGD operational conditions (chamber design, applied power, pressure and duty cycle) was performed using acetone and benzene as model compounds. During the different optimizations, molecular, fragment and elemental information were obtained when characteristic GD pulse regions were measured. An exploratory study for several VOCs (lineal hydrocarbons, oxygen‐containing compounds and aromatic compounds) revealed the capability of the PGD to provide crucial information to elucidate structures (fragments), molecular ions or even proton affinity nature of the molecules; this last information is a consequence of the enriched proton environment generated along the afterglow region for the ionization chamber used. Analytical characteristics were evaluated with solid phase microextraction–gas chromatography coupled to PGD‐TOFMS for special aromatic hydrocarbons (benzene, toluene, ethylbenzene, xylene: BTEX) in water, showing a good performance in terms of reproducibility and sensitivity. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

4.
In this work, reverse micelle‐based supramolecular solvent microextraction method coupled with supercritical fluid extraction and used for determining trace amounts of polycyclic aromatic hydrocarbons in apple peels. The extract was analyzed by high‐performance liquid chromatography equipped with a fluorescence detector. Coupling supramolecular solvent microextraction with supercritical fluid extraction method, resolve low preconcentration factor of supercritical fluid extraction method, improved limit of detection of polycyclic aromatic hydrocarbons and allow the use of supramolecular solvent microextraction in solid matrices. The effective parameters on the supramolecular solvent microextraction and supercritical fluid extraction efficiency were optimized using one variable at a time and face centered design methods, respectively. Under the optimum condition, the limits of detection and limits of quantifications were in the range of 0.34–1.27 and 1.03–3.82 µg/kg, respectively. Analysis of polycyclic aromatic hydrocarbons in apple peels showed that the supercritical fluid extraction/ supramolecular solvent microextraction method provide great potential for trace analysis of polycyclic aromatic hydrocarbons in fruit samples (RSDs < 7.7%).  相似文献   

5.
Benzene, toluene, and xylene isomers (BTXs) and pyrene, benzo(b)fluoranthene, and benzo(a)pyrene (polycyclic aromatic hydrocarbons) are common pollutants found in many industrial effluents and in aquifers due to fossil fuels spill from underground storage reservoirs. For these reasons, the determination of these compounds has gained importance in the last decades. In this work, a simultaneous, fast, and accurate quantification of six petroleum hydrocarbon compounds (such as BTXs, pyrene, benzo(b)fluoranthene, and benzo(a)pyrene) using a high-performance liquid chromatography–diode array detector method has been demonstrated. The proposed method is suitable for the direct aqueous sample evaluation and also brings advantages, including the use of small volumes of organic solvents, with high resolution, reducing the analysis cost. The method was also checked using synthetic and real samples, including those containing surfactants, commercial gasoline, and river water samples spiked with petroleum hydrocarbon compounds.  相似文献   

6.
The adsorption behavior of benzene, toluene, o-xylene, m-xylene, and p-xylene onto activated carbon was investigated using the flow method. The removal efficiency of aromatic hydrocarbons in the gaseous phase was estimated based on the adsorption kinetic constants and the saturated amount of aromatic hydrocarbons adsorbed on the activated carbon. The saturated amount of benzene and toluene adsorbed was greater than that of xylene adsorbed because the molecular sizes of benzene and toluene are smaller than that of xylene. The adsorption kinetic constant increased in the order of xylene, toluene, and benzene. Those of the three xylene isomers were similar. These results indicated that the adsorption rate of benzene by the activated carbon was the fastest and the kinetic constant depended upon the different between the boiling point and the melting point and the molecular size of the aromatic hydrocarbons.  相似文献   

7.
The design of artificial systems that mimic highly evolved and finely tuned natural enzymes is a promising subject of intensive research. The assembly of O‐symmetric cubic structures with an Fe8L6 formula was reported through the direct combination of a C4‐symmetric tetraphenylethylene‐based ligand with a C3‐symmetric tris(bipyridine)iron node. The robust metal–organic cubes are rich in π‐electron density and provide favorable interactions with planar polycyclic aromatic hydrocarbons. Within the confined space of the host, the aromatic hydrocarbons molecules are forced closer to the redox active host, and the photoinduced electron transfer (PET) is modified into a pseudo‐intramolecular pathway. These iron vertices within the cubes exhibit suitable redox potential for electrochemical reduction of protons and the well‐modified PET is further tailored to create artificial systems for light‐driven hydrogen evolution from water through the encapsulation of fluorescein dyes. Control experiments based on a mononuclear compound resembling the iron corner of the octahedron suggest an enzymatic dynamic behavior. The new, well‐elucidated reaction pathways and the increased molarity of the reaction within the confined space render these supramolecular systems superior to other relevant systems.  相似文献   

8.
This study describes a method for the quantification of trace‐level benzene, toluene, ethylbenzene, and xylene in cellulose acetate tow by heart‐cutting multidimensional gas chromatography with mass spectrometry in selected ion monitoring mode. As the major volatile component in cellulose acetate tow samples, acetone would be overloaded when attempting to perform a high‐resolution separation to analyze trace benzene, toluene, ethylbenzene, and xylene. With heart‐cutting technology, a larger volume injection was achieved and acetone was easily cut off by employing a capillary column with inner diameter of 0.32 mm in the primary gas chromatography. Only benzene, toluene, ethylbenzene, and xylene were directed to the secondary column to result in an effective separation. The matrix interference was minimized and the peak shapes were greatly improved. Finally, quantitative analysis of benzene, toluene, ethylbenzene, and xylene was performed using an isotopically labeled internal standard. The headspace multidimensional gas chromatography mass spectrometry system was proved to be a powerful tool for analyzing trace volatile organic compounds in complex samples.  相似文献   

9.
In this study, a needle‐trap device with fibers coated with a molecularly imprinted polymer was developed for separation. A number of heat‐resistant Zylon filaments were longitudinally packed into a glass capillary, followed by coating with a molecularly imprinted polymer. Then, the molecularly imprinted polymer coating was copolymerized and anchored onto the surface of the fibers. The bundle of synthetic fibers coated with the molecularly imprinted polymer was packed into a 21G stainless‐steel needle and served as an extraction medium. The coated‐fiber needle extraction device was used to extract volatile organic compounds from paints and gasoline effectively. Subsequently, the extracted volatile organic compounds were analyzed by gas chromatography. Calibration curves of gaseous benzene, toluene, ethylbenzene, and o‐xylene in the concentration range of 1–250 μg/L were obtained to evaluate the method, acceptable linearity was attended with correlation coefficients above 0.998. The limit of detection of benzene, toluene, ethylbenzene, and o‐xylene was 11–20 ng/L using the coated‐fiber needle‐trap device. The relative standard deviation of needle‐to‐needle repeatability was less than 8% with an extraction time of 20 min. The loss rates after storage for 3 and 7 days at room temperature were less than 30%.  相似文献   

10.
In this study, an impurity profiling method was established for the source identification of spilled benzene series compounds. Toluene was used as a case study to demonstrate the feasibility of this approach. Gas chromatography with mass spectrometry was applied for identification and quantification of the impurities including ethyl benzene, p‐xylene, m‐xylene, and o‐xylene in toluene. Impurities in toluene were detected at very low levels by applying mass spectrometry in selected‐ion monitoring mode. Eight authentic toluene samples collected from different manufacturers were analyzed by the developed gas chromatography with mass spectrometry method to construct the characteristic impurity profiling of toluene. Then, combined with scatter distribution, similarity analysis and t‐test, a suite of diagnostic ratios based on the impurity distribution was used for the differentiation of toluene from different sources. Results indicated that scatter distribution method can discriminate the original toluene samples from different manufacturers. Similarity calculation and t‐test methods can identify effectively the weathered toluene samples. The proposed impurity profiling method was useful for discrimination between toluene samples from different sources. Statistical analysis of these impurity profiles demonstrated the potential to investigate whether two questioned spilled toluene samples encountered in forensic casework are from the same source.  相似文献   

11.
The sorption isotherms and diffusivities for vapors of some selected simple alcohols (methanol, ethanol, isopropanol, and 2-butanol), ketones (acetone, methyl ethyl ketone, and methyl isobutyl ketone), and aromatic compounds (benzene, toluene, and xylene) in poly[bis(trifluoroethoxy)phosphazene] (PTFEP) and poly[bis(phenoxy)phosphazene] (PPOP) were determined by integral sorption-desorption experiments at 35°C. The sorption isotherms for these compounds evaluated were almost linear to obey Henry's law for the determination of constant solubility of each solvent vapor species, and the corresponding permeabilities for them can be estimated according to the solution-diffusion model. The diffusivities for these vapors in PPOP (10−9∼10−8 cm2/s) were about one order smaller than those in PTFEP (10−8∼10−7 cm2/s) because the more rigid phenoxy groups and the higher crystallinity in PPOP may hinder the diffusion of sorbed molecules. Relatively weak dependence of diffusivity or permeability on the vapor activity (or concentration) was found, to be in contrast to the exponential dependence for many organic vapors in rubbery organic polymers, probably due to the limited increase of the free volume in sorption for these vapors in PTFEP and PPOP membranes.  相似文献   

12.
A naphthalenediimide (NDI)‐based synthetic peptide molecule forms gels in a particular solvent mixture (chloroform/aromatic hydrocarbon, 4:1) through charge‐transfer (CT) complex formation; this is evident from the corresponding absorbance and fluorescence spectra at room temperature. Various aromatic hydrocarbon based solvents, including benzene, toluene, xylene (ortho, meta and para) and mesitylene, have been used for the formation of the CT complex. The role of different solvent molecules with varying electron‐donation capacities in the formation of CT complexes has been established through spectroscopic and computational studies.  相似文献   

13.
A recent study on nanoporous carbon based materials (J. Am. Chem. Soc.­ 2012 , 134, 2864) showed that the presence of abundant graphitized sp2 carbon species in the frameworks led to higher affinity for aromatic hydrocarbons than their aliphatic analogues. Herein, improved understanding of the sensitive and selective detection of aromatic substances by using mesoporous carbon (MPC)‐based materials, combined with a quartz crystal microbalance (QCM) sensor system, was obtained. MPCs were synthesized by direct carbonization of mesoporous polymers prepared from resol through a soft templating approach with Pluronic F127. The carbon‐based frameworks can be graphitized through the addition of a cobalt source to the precursor solution, according to the catalytic activity of the cobalt nanoparticles formed during the carbonization process. From the Raman data, the degree of the graphitization was clearly increased by increasing the cobalt content and elevating the carbonization temperature. From a QCM study, it was proved that the highly graphitized MPCs exhibited a higher affinity for aromatic hydrocarbons than their aliphatic analogues. By increasing the degree of graphitization in the carbon‐based pore walls, the MPCs showed both larger adsorption uptake and faster sensor response towards toxic benzene and toluene vapors.  相似文献   

14.
考察了Mo和Ni改性的HZSM-5催化剂对煤热解焦油的改质性能,分析了催化改质前后焦油中轻质芳烃分布的变化规律。结果表明,经HZSM-5催化剂褐煤(XM)热解轻质芳烃总量的增加率为220%,这与煤热解产物在HZSM-5催化剂中发生烯烃和烷烃的芳构化以及酚羟基脱除等作用有关。负载活性金属Mo和Ni后,可以有效促进轻质芳烃的生成;Ni对焦油中带脂肪侧链化合物具有更强的裂解作用,而Mo则有利于带侧链化合物如甲苯和二甲苯的形成。焦煤(FX)热解过程中轻质芳烃的释放量分别是XM煤和年轻烟煤(PS)的2.2和2.4倍。经催化改质后,XM煤产物中轻质芳烃产率明显大于PS煤,并接近FX煤;这主要是因为XM煤结构中含有较多的含氧官能团和脂肪结构,在HZSM-5作用下可催化形成轻质芳烃。  相似文献   

15.
A systematic study is conducted on four microporous metal–organic framework compounds built on similar ligands but different structures, namely [Zn3(bpdc)3(bpy)] ? 4 DMF ? H2O ( 1 ), [Zn3(bpdc)3(2,2′dmbpy)] ? 4 DMF ? H2O ( 2 ), [Zn2(bpdc)2(bpe)] ? 2 DMF ( 3 ), and [Zn(bpdc)(bpe)] ? DMF ( 4 ) (bpdc=4,4′‐biphenyldicarboxylate; bpy=4,4′‐bipyridine; 2,2′dmbpy=2,2′‐dimethyl‐4,4′bipyridine; bpe=1,2‐bis(4‐pyridyl)ethane; DMF=N,N′‐dimethylformamide) to investigate their photoluminescence properties and sensing/detection behavior upon exposure to vapors of various aromatic molecules (analytes) including nitroaromatic explosives. The results show that all four compounds are capable of detecting these molecules in the vapor phase through fluorescence quenching or enhancement. Both electrochemical measurements and theoretical calculations are performed to analyze the analyte–MOF interactions, to explain the difference in signal response by different analytes, and to understand the mechanism of fluorescence quenching or enhancement observed in these systems. Interestingly, compound 3 also shows an emission frequency shift when exposed to benzene (BZ), chlorobenzene (ClBZ), and toluene (TO), which provides an additional variable for the identification of different analytes in the same category.  相似文献   

16.
The absolute photoionization cross‐sections of aromatics and aromatic derivatives including toluene, ethylbenzene, n‐propylbenzene, o‐xylene, m‐xylene, p‐xylene, 1,3,5‐trimethylbenzene, styrene, phenylacetylene, indene, indane, 1‐methylnaphthalene, benzyl alcohol and benzaldehyde were measured at the photon energy range from ionization thresholds to 11.7 eV. The experiments were performed by tunable synchrotron vacuum ultraviolet (VUV) photoionization mass spectrometry. Benzene was chosen as a calibration standard, since its photoionization cross‐section is well known. Binary liquid mixtures of the investigated molecules and benzene were used in the measurements. Photo‐induced fragments from the molecules were also observed, and their photoionization cross‐sections are also presented. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
It has been shown that difluoro(dibenzoylmethanato)boron ((dbm)BF2) can be absorbed on silica gel in the form of fluorescent monomers and dimers with the emission properties that change in the presence of vapors of volatile organic compounds, such as ethanol, acetone, toluene, and meta-xylene. Fluorescence quenching was observed for the (dbm)BF2 monomers and dimers in the case of ethanol and acetone, whereas the formation of fluorescent exciplexes with monomers and enhancement of the dimer fluorescence were observed in the case of toluene and meta-xylene. Results of the quantum-chemical calculations of the structure of the (dbm)BF2 monomer complex with the matrix and toluene and (dbm)BF2 dimers with matrix are presented.  相似文献   

18.
The concept of shape selectivity is available to produce symmetrical dinuclear aromatic hydrocarbons such as 2,6-dialkylnaphthalene and 4,4′-dialkylbiphenyl, which are the raw materials for liquid crystals and polyester with superior properties, respectively. The ZSM-5 catalyst exhibits high activity and selectivity for the formation of p-xylene in the disproportionation and alkylation of toluene. The catalytic activity of ZSM-5 for the conversion of naphthalene derivatives is markedly low due to its small pore size, although symmetrical dinuclear aromatic hydrocarbons are selectively formed. The high catalytic activity is obtained with twelve-membered ring zeolites. Among these zeolites, mordenite is the most selective catalyst to produce symmetrical dinuclear aromatic hydrocarbons. The precise controls of the size of pore opening and the acidic property are required to enhance the selectivity for symmetrical dinuclear aromatic hydrocarbons. The non-zeolitic molecular sieves also present a great opportunity in high selective synthesis of these compounds.  相似文献   

19.
Zeolites have been shown to effectively promote cracking reactions during pyrolysis resulting in highly deoxygenated and hydrocarbon-rich compounds and stable pyrolysis oil product. Py/GC-MS was employed to study the catalytic fast pyrolysis of lignocellulosic biomass samples comprising oak, corn cob, corn stover, and switchgrass, as well as the fractional components of biomass, i.e., cellulose, hemicellulose, and lignin. Quantitative values of condensable vapors and relative compositions of the pyrolytic products including non-condensable gases (NCG's) and solid residues are presented to show how reaction products are affected by catalyst choice. While all catalysts decreased the oxygen-containing products in the condensable vapors, H-ZSM-5 was most effective at producing aromatic hydrocarbons from the pyrolytic vapors. We demonstrated how the Si/Al ratio of the catalysts plays a role in the deoxygenation of the vapors towards the pathway to aromatic hydrocarbons.  相似文献   

20.
《中国化学会会志》2018,65(5):578-590
A laboratory study was carried out to investigate the chemical composition of aged aromatic secondary organic aerosol (SOA) formed from the photoxidation of p‐xylene in the presence of ammonia (NH3). The experiments were conducted by irradiating p‐xylene/CH3ONO/NH3 air mixtures without and with NO in a home‐made smog chamber. The particulate products of aged p‐ xylene SOA in the presence of NH3 were measured by UV–vis spectrophotometry, attenuated total reflectance Fourier transform infrared (ATR‐FTIR) spectroscopy, and aerosol laser time‐of‐flight mass spectrometry (ALTOFMS) coupled with the fuzzy C‐means (FCM) clustering algorithm. The experimental results show that NH3 does not alter the gas–particle partitioning in the photoxidation of p‐xylene without NO and that 2,5‐dimethylphenol is the predominant NH3‐aged p‐xylene SOA without NO. However, NH3 has a significant promotional effect on the formation of organonitrogen compounds in the OH‐initiated oxidation of p‐xylene with NO. Organic ammonium salts such as ammonium glyoxylate and p‐methyl ammonium benzoate, which are formed from NH3 reactions with gaseous organic acids, were detected as the major particulate organonitrogen products of NH3‐aged p‐xylene SOA with NO. 1H‐Imidazole, 4‐methyl‐1H‐imidazole, and other imidazole products of the heterogeneous reactions between NH3 and dialdehydes of p‐xylene SOA were newly measured. The possible reaction mechanisms leading to these organonitrogen products are also discussed and proposed. The formation of imidazole products suggests that some ambient particles containing organonitrogen compounds may be the result of this mechanism. The results of this study may provide valuable information for discussing anthropogenic SOA aging mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号