首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electronic structure of the iron(II) spin crossover complex [Fe(H2bpz)2(phen)] deposited as an ultrathin film on Au(111) is determined by means of UV‐photoelectron spectroscopy (UPS) in the high‐spin and in the low‐spin state. This also allows monitoring the thermal as well as photoinduced spin transition in this system. Moreover, the complex is excited to the metastable high‐spin state by irradiation with vacuum‐UV light. Relaxation rates after photoexcitation are determined as a function of temperature. They exhibit a transition from thermally activated to tunneling behavior and are two orders of magnitude higher than in the bulk material.  相似文献   

2.
Co‐crystallization of a cationic FeII complex with a partially charged TCNQ.δ? (7,7′,8,8′‐tetracyanoquinodimethane) radical anion has afforded molecular materials that behave as narrow band‐gap semiconductors, [Fe(tpma)(xbim)](X)(TCNQ)1.5?DMF (X=ClO4? or BF4?; tpma=tris(2‐pyridylmethyl)amine, xbim=1,1′‐(α,α′‐o‐xylyl)‐2,2′‐bisimidazole). Remarkably, these complexes also exhibit temperature‐and light‐driven spin crossover at the FeII center, and are thus the first structurally defined magnetically bistable semiconductors assembled with the TCNQ.δ? radical anion. Transport measurements reveal the conductivity of 0.2 S cm?1 at 300 K, with the low activation energy of 0.11 eV.  相似文献   

3.
4.
A neutral mononuclear FeIII complex [FeIII(H‐5‐Br‐thsa‐Me)(5‐Br‐thsa‐Me)]?H2O ( 1 ; H2‐5‐Br‐thsa‐Me=5‐bromosalicylaldehyde methylthiosemicarbazone) was prepared that exhibited a three‐step spin‐crossover (SCO) with symmetry breaking and a 14 K hysteresis loop owing to strong cooperativity. Two ordered intermediate states of 1 were observed, 4HS–2LS and 2HS–4LS, which exhibited reentrant phase‐transition behavior. This study provides a new platform for examining multistability in SCO complexes.  相似文献   

5.
6.
How low can you go? An FeII4 square was prepared by self‐assembly and exhibits both thermally induced and photoinduced spin crossover from a system with four high‐spin (HS) centers to one with two high‐spin and two low‐spin (LS) centers. The spin‐crossover sites are located on the same side of the square, and the spin transition and magnetic interactions (see picture) are synergistically coupled.

  相似文献   


7.
8.
9.
10.
11.
12.
Submono‐, mono‐ and multilayers of the Fe(II) spin‐crossover (SCO) complex [Fe(bpz)2(phen)] (bpz=dihydrobis(pyrazolyl)borate, phen=1,10‐phenanthroline) have beenprepared by vacuum deposition on Au(111) substrates and investigated with near edge X‐ray absorption fine structure (NEXAFS) spectroscopy and scanning tunneling microscopy (STM). As evidenced by NEXAFS, molecules of the second layer exhibit a thermal spin crossover transition, although with a more gradual characteristics than in the bulk. For mono‐ and submonolayers of [Fe(bpz)2(phen)] deposited on Au(111) substrates at room temperature both NEXAFS and STM indicate a dissociation of [Fe(bpz)2(phen)] on Au(111) into four‐coordinate complexes, [Fe(bpz)2], and phen molecules. Keeping the gold substrate at elevated temperatures ordered monolayers of intact molecules of [Fe(bpz)2(phen)] are formed which can be spin‐switched by electron‐induced excited spin‐state trapping (ELIESST).  相似文献   

13.
Twelve coordination polymers with formula {Fe(3‐Xpy)2[MII(CN)4]} (MII: Ni, Pd, Pt; X: F, Cl, Br, I; py: pyridine) have been synthesised, and their crystal structures have been determined by single‐crystal or powder X‐ray analysis. All of the fluoro and iodo compounds, as well as the chloro derivative in which MII is Pt, crystallise in the monoclinic C2/m space group, whereas the rest of the chloro and all of the bromo derivatives crystallise in the orthorhombic Pnc2 space group. In all cases, the iron(II) atom resides in a pseudo‐octahedral [FeN6] coordination core, with similar bond lengths and angles in the various derivatives. The major difference between the two kinds of structure arises from the stacking of consecutive two‐dimensional {Fe(3‐Xpy)2[MII(CN)4]} layers, which allows different dispositions of the X atoms. The fluoro and chloro derivatives undergo cooperative spin crossover (SCO) with significant hysteretic behaviour, whereas the rest are paramagnetic. The thermal hysteresis, if X is F, shifts toward room temperature without changing the cooperativity as the pressure increases in the interval 105 Pa–0.5 GPa. At ambient pressure, the SCO phenomenon has been structurally characterised at different significant temperatures, and the corresponding thermodynamic parameters were obtained from DSC calorimetric measurements. Compound {Fe(3‐Clpy)2[Pd(CN)4]} represents a new example of a “re‐entrant” two‐step spin transition by showing the Pnma space group in the intermediate phase (IP) and the Pnc2 space group in the low‐spin (LS) and high‐spin (HS) phases.  相似文献   

14.
A new type of [2×2] matrix‐like complexes with one vertex devoid of a metal ion has been selectively synthesized. The defect‐grid triiron(II) complex exhibits a sharp and complete spin‐crossover (SCO) from the 1HS‐2LS to the 2HS‐1LS state (HS: high spin; LS: low spin) with wide hysteresis near room temperature. Although the “structurally soft” H‐bonded vertex, elastically coupled to the metal ions, accounts for the stabilization of spin states, it also mediates a dramatic, yet reversible, response to the uptake of exogenous solvent molecules leading to silencing of the SCO. The high sensitivity towards those guest molecules, the short response time upon exposure, and the smooth reversibility of guest binding are favorable characteristics for future sensing applications of such defect grids.  相似文献   

15.
A major challenge is the development of multifunctional metal–organic frameworks (MOFs), wherein magnetic and electronic functionality can be controlled simultaneously. Herein, we rationally construct two 3D MOFs by introducing the redox active ligand tetra(4‐pyridyl)tetrathiafulvalene (TTF(py)4) and spin‐crossover FeII centers. The materials exhibit redox activity, in addition to thermally and photo‐induced spin crossover (SCO). A crystal‐to‐crystal transformation induced by I2 doping has also been observed and the resulting intercalated structure determined. The conductivity could be significantly enhanced (up to 3 orders of magnitude) by modulating the electronic state of the framework via oxidative doping; SCO behavior was also modified and the photo‐magnetic behavior was switched off. This work provides a new strategy to tune the spin state and conductivity of framework materials through guest‐induced redox‐state switching.  相似文献   

16.
A spin‐crossover cluster with the {FeII4O4} core structure is presented by D. Y. Wu, O. Sato et al. in their Communication on page 1475 ff. The cluster is synthesized by self‐assembly and shows an abrupt spin transition, giving two high‐spin and two low‐spin states. It exhibits complete light‐induced excited spin‐state trapping effects. Importantly, synergy effects between the magnetic interaction and spin transition operate in the cluster.

  相似文献   


17.
One‐dimensional coordination FeII polymers constructed through triple N1,N2‐1,2,4‐triazole bridges form a unique class of spin‐crossover materials, the synthetic versatility of which allows tuning the spin‐crossover properties, the design of gels, films, liquid crystals, and nanoparticles and single‐particle addressing. This Minireview provides the first complete overview of these very attractive switchable materials and their most recent developments.  相似文献   

18.
New methods are proposed for the synthesis of spin‐crossover nano‐ and micro‐objects. Several nano‐objects that are based upon the spin‐crossover complex [Fe(hptrz)3](OTs)2 (hptrz=4‐heptyl‐1,2,4‐triazole, Ts=para‐toluenesulfonyl) were prepared in homogeneous media. The use of various reagents (Triton X‐100, PVP, TOPO, and PEGs of different molecular weights) as stabilizing agents yielded materials of different size (6 nm–2 μm) and morphology (nanorods, nanoplates, small spherical particles, and nano‐ and micro‐crystals). In particular, when Triton X‐100 was used, a variation in the morphology from nanorods to nanoplates was observed by changing the nature of the solvent. Interestingly, the preparation of the nanorods and nanoplates was always accompanied by the formation of small spherical particles. Alternatively, when PEG was used, 200–400 nm crystals of the complex were obtained. In addition, a very promising polymer‐free synthetic method is discussed that was based on the preparation of relatively stable FeII–triazole oligomers in CHCl3. Their specific treatment led to micro‐crystals, small nanoparticles, or gels. The size and morphology of all of these objects were characterized by TEM and by dynamic light scattering (DLS) where possible. Their spin‐crossover behavior was studied by optical and magnetic measurements. The spin‐transition features for large particles (>100 nm) were very similar to that of the bulk material, that is, close to room temperature with a hysteresis width of up to 8 K. The effects of the matrix and/or size‐reduction led to modification of the transition temperature and an abruptness of the spin transition for oligomeric solutions and small nanoparticles of 6 nm in size.  相似文献   

19.
Crystalline [Fe(bppSMe)2][BF4]2 ( 1 ; bppSMe=4‐(methylsulfanyl)‐2,6‐di(pyrazol‐1‐yl)pyridine) undergoes an abrupt spin‐crossover (SCO) event at 265±5 K. The crystals also undergo a separate phase transition near 205 K, involving a contraction of the unit‐cell a axis to one‐third of its original value (high‐temperature phase 1; Pbcn, Z=12; low‐temperature phase 2; Pbcn, Z=4). The SCO‐active phase 1 contains two unique molecular environments, one of which appears to undergo SCO more gradually than the other. In contrast, powder samples of 1 retain phase 1 between 140–300 K, although their SCO behaviour is essentially identical to the single crystals. The compounds [Fe(bppBr)2][BF4]2 ( 2 ; bppBr=4‐bromo‐2,6‐di(pyrazol‐1‐yl)pyridine) and [Fe(bppI)2][BF4]2 ( 3 ; bppI=4‐iodo‐2,6‐di(pyrazol‐1‐yl)‐pyridine) exhibit more gradual SCO near room temperature, and adopt phase 2 in both spin states. Comparison of 1 – 3 reveals that the more cooperative spin transition in 1 , and its separate crystallographic phase transition, can both be attributed to an intermolecular steric interaction involving the methylsulfanyl substituents. All three compounds exhibit the light‐induced excited‐spin‐state trapping (LIESST) effect with T(LIESST=70–80 K), but show complicated LIESST relaxation kinetics involving both weakly cooperative (exponential) and strongly cooperative (sigmoidal) components.  相似文献   

20.
A new synthesis of (8‐quinolyl)‐5‐methoxysalicylaldimine (Hqsal‐5‐OMe) is reported and its crystal structure is presented. Two FeIII complexes, [Fe(qsal‐5‐OMe)2]Cl ? solvent (solvent=2 MeOH ? 0.5 H2O ( 1 ) and MeCN ? H2O ( 2 )) have been prepared and their structural, electronic and magnetic properties studied. [Fe(qsal‐5‐OMe)2] Cl ? 2 MeOH ? 0.5 H2O ( 1 ) exhibits rare crystallographically independent high‐spin and low‐spin FeIII centres at 150 K, whereas [Fe(qsal‐5‐OMe)2]Cl ? MeCN ? H2O ( 2 ) is low spin at 100 K. In both structures there are extensive π–π and C? H???π interactions. SQUID magnetometry of 2 reveals an unusual abrupt stepped‐spin crossover with T1/2=245 K and 275 K for steps 1 and 2, respectively, with a slight hysteresis of 5 K in the first step and a plateau of 15 K between the steps. In contrast, 1 is found to undergo an abrupt half‐spin crossover also with a hysteresis of 10 K. The two compounds are the first FeIII complexes of a substituted qsal ligand to exhibit abrupt spin crossover. These conclusions are supported by 57Fe Mössbauer spectroscopy. Both complexes exhibit reversible reduction to FeII at ?0.18 V and irreversible oxidation of the coordinated qsal‐5‐OMe ligand at +1.10 V.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号