首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A rapid and catalyst‐free cycloaddition system for visible‐light‐induced click chemistry is reported. A readily accessible photoreactive 2H‐azirine moiety was designed to absorb light at wavelengths above 400 nm. Irradiation with low‐energy light sources thus enables efficient small‐molecule synthesis with a diverse range of multiple‐bond‐containing compounds. Moreover, in order to demonstrate the efficiency of the current approach, quantitative ligation of the photoactivatable chromophore with functional polymeric substrates was performed and full conversion with irradiation times of only 1 min at ambient conditions was achieved. The current report thus presents a highly efficient method for applications involving selective cycloaddition to electron‐deficient multiple‐bond‐containing materials.  相似文献   

2.
The first visible‐light‐mediated synthesis of trifluoromethylselenolated arenes under metal‐free conditions is reported. The use of an organic photocatalyst enables the trifluoromethylselenolation of arene diazonium salts using the shelf‐stable reagent trifluoromethyl tolueneselenosulfonate at room temperature. The reaction does not require the presence of any additives and shows high functional‐group tolerance, covering a very broad range of starting materials. Mechanistic investigations, including EPR spectroscopy, luminescence investigations, and cyclic voltammetry allow rationalization of the reaction mechanism.  相似文献   

3.
Bromodifluoromethylphosphonium bromide was solely used as the precursor of difluorocarbene. Herein, an unprecedented visible‐light‐induced hydrodifluoromethylation of alkenes with bromodifluoromethylphosphonium bromide using H2O and THF as hydrogen sources for the synthesis of difluoromethylated alkanes is described. This difluoromethylation is characterized by mild reaction conditions, ready availability of reagents, and excellent functional‐group tolerance.  相似文献   

4.
Photocatalysis enables the cascade reactions of indoles and CBr4 in MeOH through a C(sp2)?H functionalization/methanolysis sequence. The title reaction provides an efficient access to indole 2‐ and 3‐carboxylates in a single operation (no preinstallation of protecting as well as directing groups was required) with good yields under mild reaction conditions.  相似文献   

5.
Diethyl 2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate (HEH) has been utilized as a visible-light photoredox catalyst for the cross coupling of arylhalides and arylsulfinates without transition metal, sacrificial agent, and mediator. This method is compatible with various functional groups and provides diaryl sulfones in good to high yields. Mechanistic studies indicate that this reaction undergoes the stepwise light irradiation of HE, single electron transfer (SET) in donor–acceptor complex (DAC) from *HE to arylhalide, trapping of aryl radical with sulfinate, and SET oxidation of sulfone radical anion by HE. to sulfone by the DAC method.  相似文献   

6.
The development of efficient and selective C?N bond‐forming reactions from abundant feedstock chemicals remains a central theme in organic chemistry owing to the key roles of amines in synthesis, drug discovery, and materials science. Herein, we present a dual catalytic system for the N‐alkylation of diverse aromatic carbocyclic and heterocyclic amines directly with carboxylic acids, by‐passing their preactivation as redox‐active esters. The reaction, which is enabled by visible‐light‐driven, acridine‐catalyzed decarboxylation, provides access to N‐alkylated secondary and tertiary anilines and N‐heterocycles. Additional examples, including double alkylation, the installation of metabolically robust deuterated methyl groups, and tandem ring formation, further demonstrate the potential of the direct decarboxylative alkylation (DDA) reaction.  相似文献   

7.
8.
The visible‐light‐promoted diastereodivergent intramolecular oxyamination of alkenes is described to construct oxazolindinones, pyrrolidinones and imidazolidones via mild generation of primary amidyl radicals from functionalized hydroxylamines. A unique phenomenon of highly diastereoselective ring‐opening of aziridines controlled by electron sacrifices was observed. Highly diastereoselective amino alcohols derivatives were obtained efficiently through this protocol in gram scales. The mechanistic studies suggested the isolatable anti‐aziridine intermediates were generated quickly from primary amidyl radicals and the diastereoselectivities were controlled by pKa values of the electron sacrifices.  相似文献   

9.
10.
A direct oxidative C?H amidation of heteroarenes with sulfonamides via nitrogen‐centered radicals has been achieved. Nitrogen‐centered radicals are directly generated from oxidative cleavage of N?H bonds under visible‐light photoredox catalysis. Sulfonamides, which are easily accessed, are used as tunable nitrogen sources and bleach (aqueous NaClO solution) is used as the oxidant. A variety of heteroarenes, including indoles, pyrroles and benzofurans, can undergo this amidation with high yields (up to 92 %). These reactions are highly regioselective, and all the products are isolated as single regioisomer.  相似文献   

11.
12.
Herein, multifunctional N‐doped carbon nanodots (NCNDs) were prepared through the one‐step hydrothermal treatment of yeast. Results show that the NCNDs can be used as a new photocatalyst to drive the water‐splitting reaction under UV light. Moreover, the NCNDs can efficiently catalyze the hydrogen evolution reaction. Under visible‐light irradiation, Eosin Y‐sensitized NCNDs exhibit excellent activity for hydrogen evolution. The hydrogen evolution rate of NCNDs (without any modification and co‐catalyst) reaches 107.1 μmol h?1 (2142 μmol g?1 h?1). When Pt is loaded on the NCNDs, the hydrogen evolution rate reaches 491.2 μmol h?1 (9824 μmol g?1 h?1) under visible‐light irradiation. In addition, the NCNDs show excellent fluorescent properties and can be applied as a fluorescent probe for the sensitive and selective detection of Fe3+.  相似文献   

13.
The direct, photoacid‐catalyzed synthesis of 2‐deoxyglycosides from glycals is reported. A series of phenol‐conjugated acridinium‐based organic photoacids were rationally designed, synthesized, and studied alongside the commercially available phenolic catalyst eosin Y. In the presence of such a photoacid catalyst and light, synthetic glycals were activated and coupled with a range of alcohols to afford 2‐deoxyglycosides in good yields and with excellent α‐selectivity.  相似文献   

14.
A visible‐light‐mediated synthesis of valuable polycyclic indolizine heterocycles from easily accessed brominated pyridine and enol carbamate derivatives has been developed. This process, which operates at room temperature under irradiation from readily available light sources, does not require the addition of an external photocatalyst. Instead, an investigation into the reaction mechanism indicates that the indolizine products themselves may be in some way involved in mediating and accelerating their own formation. Preliminary studies also show that these simple heterocyclic compounds may be capable of facilitating other visible‐light‐mediated transformations.  相似文献   

15.
TiO2 photoredox catalysis has recently attracted much interest for use in performing challenging organic transformations under mild reaction conditions. However, the reaction scheme is hampered by the fact that TiO2 can only be excited by UV light of wavelengths λ shorter than 385 nm. One promising strategy to overcome this issue is to anchor an organic, preferably metal‐free dye onto the surface of TiO2. Importantly, we observed that the introduction of a catalytic amount of the redox mediator TEMPO [(2,2,6,6‐tetramethylpiperidin‐1‐yl)oxyl] ensured the stability of the anchored dye, alizarin red S, thereby resulting in the selective oxidation of organic sulfides with O2. This result affirms the essential role of the redox mediator in enabling the organic transformations by visible‐light photoredox catalysis.  相似文献   

16.
Ternary core–shell heterostructured rutile@anatase@CrxOy nanorod arrays were elaborately designed as photoanodes for efficient photoelectrochemical water splitting under visible‐light illumination. The four‐fold enhanced and stabilized visible‐light photocurrent highlights the unique role of the interim anatase layer in accelerating the interfacial charge transfer from the CrxOy chromophore to rutile nanorods.  相似文献   

17.
18.
Heteroaromatic sulfoxides are a frequent structural motif in natural products, drugs, catalysts, and materials. We report a metal‐free visible‐light‐accelerated synthesis of heteroaromatic sulfoxides from sulfinamides and peroxodisulfate. The reaction proceeds at room temperature with blue‐light irradiation and allows the C−H sulfinylation of electron‐rich heteroarenes, such as pyrroles and indoles. An electrophilic aromatic substitution mechanism is proposed based on the substrate scope, substitution selectivity, and competition experiments with different nucleophiles.  相似文献   

19.
Herein, we report a new visible‐light‐promoted strategy to access radical trifluoromethylthiolation reactions by combining halide and photoredox catalysis. This approach allows for the synthesis of vinyl–SCF3 compounds of relevance in pharmaceutical chemistry directly from alkenes under mild conditions with irradiation from household light sources. Furthermore, alkyl–SCF3‐containing cyclic ketone and oxindole derivatives can be accessed by radical‐polar crossover semi‐pinacol and cyclization processes. Inexpensive halide salts play a crucial role in activating the trifluoromethylthiolating reagent towards photoredox catalysis and aid the formation of the SCF3 radical.  相似文献   

20.
A key to realizing the sustainable society is to develop highly active photocatalysts for selective organic synthesis effectively using sunlight as the energy source. Recently, metal‐oxide‐supported gold nanoparticles (NPs) have emerged as a new type of visible‐light photocatalysts driven by the excitation of localized surface plasmon resonance of Au NPs. Here we show that visible‐light irradiation (λ>430 nm) of TiO2‐supported Au NPs with a bimodal size distribution (BM‐Au/TiO2) gives rise to the long‐range (>40 nm) electron transport from about 14 small (ca. 2 nm) Au NPs to one large (ca. 9 nm) Au NP through the conduction band of TiO2. As a result of the enhancement of charge separation, BM‐Au/TiO2 exhibits a high level of visible‐light activity for the one‐step synthesis of azobenzenes from nitrobenzenes at 25 °C with a yield greater than 95 % and a selectivity greater than 99 %, whereas unimodal Au/TiO2 (UM‐Au/TiO2) is photocatalytically inactive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号