首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Although similar to carbon monoxide, the chemistry of homoleptic nitrogen monoxide complexes is fundamentally unexplored compared to their carbonyl analogues. Herein we report the synthesis of the first truly homoleptic transition‐metal nitrosyl cation as the salt of the weakly coordinating anions (WCAs) [Al(ORF)4]? and [F{Al(ORF)3}2]? (RF=C(CF3)3). These salts are easily accessible in good yields, phase pure, and were fully characterized by IR/Raman, NMR and UV/Vis spectroscopy as well as single‐crystal and powder X‐ray diffraction. They may serve as unprecedented simple model systems for theoretical and experimental studies of nitrosyl complexes.  相似文献   

2.
CuCl or pre‐generated CuCF3 reacts with CF3SiMe3/KF in DMF in air to give [Cu(CF3)4]? quantitatively. [PPN]+, [Me4N]+, [Bu4N]+, [PhCH2NEt3]+, and [Ph4P]+ salts of [Cu(CF3)4]? were prepared and isolated spectroscopically and analytically pure in 82–99 % yield. X‐ray structures of the [PPN]+, [Me4N]+, [Bu4N]+, and [Ph4P]+ salts were determined. A new synthetic strategy with [Cu(CF3)4]? was demonstrated, involving the removal of one CF3? from the Cu atom in the presence of an incoming ligand. A novel CuIII complex [(bpy)Cu(CF3)3] was thus prepared and fully characterized, including by single‐crystal X‐ray diffraction. The bpy complex is highly fluxional in solution, the barrier to degenerate isomerization being only 2.3 kcal mol?1. An NPA study reveals a huge difference in the charge on the Cu atom in [Cu(CR3)4]? for R=F (+0.19) and R=H (+0.46), suggesting a higher electron density on Cu in the fluorinated complex.  相似文献   

3.
The synthesis, characterization, and C(sp2)?CF3 reductive elimination of stable aryl[tris(trifluoromethyl)]cuprate(III) complexes [nBu4N][Cu(Ar)(CF3)3] are described. Mechanistic investigations, including kinetic studies, studies of the effect of temperature, solvent, and the para substituent of the aryl group, as well as DFT calculations, suggest that the C(sp2)?CF3 reductive elimination proceeds through a concerted carbon–carbon bond‐forming pathway.  相似文献   

4.
The synthesis, characterization, and C(sp2)?CF3 reductive elimination of stable aryl[tris(trifluoromethyl)]cuprate(III) complexes [nBu4N][Cu(Ar)(CF3)3] are described. Mechanistic investigations, including kinetic studies, studies of the effect of temperature, solvent, and the para substituent of the aryl group, as well as DFT calculations, suggest that the C(sp2)?CF3 reductive elimination proceeds through a concerted carbon–carbon bond‐forming pathway.  相似文献   

5.
The properties of the tetrakis(trifluoromethyl)‐coinage metallates(III) [M(CF3)4]? (M = Cu, Ag, Au) as W eakly C oordinating A nions (WCAs) have been investigated with quantum mechanical methods in order to quantitatively compare them to other, well‐known WCAs. Also, several new decomposition pathways have been studied. Overall the coinage metallates perform rather well and should be used more frequently in preparative chemistry.  相似文献   

6.
Syntheses and Characterizations of the First Tris and Tetrakis(trifluoromethyl) Palladates(II) and Platinates(II), [M(CF3)3(PPh3)] and [M(CF3)4]2— (M = Pd, Pt) Tris(trifluoromethyl)(triphenylphosphino)palladate(II) and platinate(II), [M(CF3)3PPh3], and the tetrakis(trifluoromethyl)metallates, [M(CF3)4]2— (M = Pd, Pt), are prepared from the reactions of [MCl2(PPh3)2] and Me3SiCF3 / [Me4N]F or [I(CF3)2] salts in good yields. [Me4N][M(CF3)3(PPh3)] crystallize isotypically in the orthorhombic space group Pnma (no. 62) with Z = 4. The NMR spectra of the new compounds are described.  相似文献   

7.
A comparative study of the homoleptic [M(CF3)4]? complexes of all three coinage metals (M=Cu, Ag, Au) reveals that homolytic M?C bond cleavage is favoured in every case upon excitation in the gas phase (CID‐MS2). Homolysis also occurs in solution by photochemical excitation. Transfer of the photogenerated CF3. radicals to both aryl and alkyl carbon atoms was also confirmed. The observed behaviour was rationalized by considering the electronic structure of the involved species, which all show ligand‐field inversion. Moreover, the homolytic pathway constitutes experimental evidence for the marked covalent character of the M?C bond. The relative stability of these M?C bonds was evaluated by energy‐resolved mass spectrometry (ERMS) and follows the order Cu<Ag?Au. The qualitatively similar and rather uniform behaviour experimentally observed for all three coinage metals gives no ground to suggest variation in the metal oxidation state along the group.  相似文献   

8.
Copper plays an important role in alkyne coordination chemistry and transformations. This report describes the isolation and full characterization of a thermally stable, copper(I) acetylene complex using a highly fluorinated bis(pyrazolyl)borate ligand support. Details of the related copper(I) complex of HC≡CSiMe3 are also reported. They are three-coordinate copper complexes featuring η2-bound alkynes. Raman data show significant red-shifts in C≡C stretch of [H2B(3,5-(CF3)2Pz)2]Cu(HC≡CH) and [H2B(3,5-(CF3)2Pz)2]Cu(HC≡CSiMe3) relative to those of the corresponding alkynes. Computational analysis using DFT indicates that the Cu(I) alkyne interaction in these molecules is primarily of the electrostatic character. The π-backbonding is the larger component of the orbital contribution to the interaction. The dinuclear complexes such as Cu2(μ-[3,5-(CF3)2Pz])2(HC≡CH)2 display similar Cu-alkyne bonding features. The mononuclear [H2B(3,5-(CF3)2Pz)2]Cu(NCMe) complex catalyzes [3 + 2] cycloadditions between tolyl azide and a variety of alkynes including acetylene. It is comparatively less effective than the related trinuclear copper catalyst {μ-[3,5-(CF3)2Pz]Cu}3 involving bridging pyrazolates.  相似文献   

9.
Despite the known nucleophilic nature of [M(CF3)2] (M=Cu, Ag, Au) complexes, their participation in trifluoromethylation reactions of aryl halides remains unexplored. Here, for the first time, selective access to a [Cu(CF3)2] species is reported, which is ubiquitous in Cu-mediated trifluoromethylations, and we rationalize its complex mechanistic scenario as well as its behavior compared to its silver and gold congeners through a combination of experimental and computational approaches.  相似文献   

10.
The reactions of py‐hz ligands ( L1–L5 ) with Pb(CF3SO3)2?H2O resulted in some rare examples of discrete single‐stranded helical PbII complexes. L1 and L2 formed non‐helical mononuclear complexes [Pb L1 (CF3SO3)2]?CHCl3 and Pb L2 (CF3SO3)2][Pb L2 CF3SO3]CF3SO3?CH3CN, which reflected the high coordination number and effective saturation of PbII by the ligands. The reaction of L3 with PbII resulted in a dinuclear meso‐helicate [Pb2 L3 (CF3SO3)2Br]CF3SO3?CH3CN with a stereochemically‐active lone pair on PbII. L4 directed single‐stranded helicates with PbII, including [Pb2 L4 (CF3SO3)3]CF3SO3?CH3CN and [Pb2 L4 CF3SO3(CH3OH)2](CF3SO3)3?2 CH3OH?2 H2O. The acryloyl‐modified py‐hz ligand L5 formed helical and non‐helical complexes with PbII, including a trinuclear PbII complex [Pb3 L5 (CF3SO3)5]CF3SO3?3CH3CN?Et2O. The high denticity of the long‐stranded py‐hz ligands L4 and L5 was essential to the formation of single‐stranded helicates with PbII.  相似文献   

11.
The homoleptic, square‐planar organoplatinum(II) compound [NBu4]2[Pt(CF3)4] ( 1 ) undergoes oxidative addition of CF3I under mild conditions to give rise to the octahedral organoplatinum(IV) complex [NBu4]2[Pt(CF3)5I] ( 2 ). This highly trifluoromethylated species reacts with Ag+ salts of weakly coordinating anions in Me2CO under a wet‐air stream to afford the aquo derivative [NBu4][Pt(CF3)5(OH2)] ( 4 ) in around 75 % yield. When the reaction of 2 with the same Ag+ salts is carried out in MeCN, the solvento compound [NBu4][Pt(CF3)5(NCMe)] ( 5 ) is obtained in around 80 % yield. The aquo ligand in 4 as well as the MeCN ligand in 5 are labile and can be cleanly replaced by neutral and anionic ligands to furnish a series of pentakis(trifluoromethyl)platinate(IV) compounds with formulae [NBu4][Pt(CF3)5(L)] (L=CO ( 6 ), pyridine (py; 7 ), tetrahydrothiophene (tht; 8 )) and [NBu4]2[Pt(CF3)5X] (X=Cl ( 9 ), Br ( 10 )). The unusual carbonyl–platinum(IV) derivative [NBu4][Pt(CF3)5(CO)] ( 6 ) is thermally stable and has a νCO of 2194 cm?1. The crystal structures of 2? CH2Cl2, 5 , [PPh4][Pt(CF3)5(CO)] ( 6′ ), and 7 have been established by X‐ray diffraction methods. Compound 2 has shown itself to be a convenient entry to the chemistry of highly trifluoromethylated platinum compounds. To the best of our knowledge, compounds 2 and 4 – 10 are the organoelement compounds with the highest CF3 content to have been isolated and adequately characterized to date.  相似文献   

12.
The reactions of iron chlorides with mesityl Grignard reagents and tetramethylethylenediamine (TMEDA) under catalytically relevant conditions tend to yield the homoleptic “ate” complex [Fe(mes)3]? (mes=mesityl) rather than adducts of the diamine, and it is this ate complex that accounts for the catalytic activity. Both [Fe(mes)3]? and the related complex [Fe(Bn)3]? (Bn=benzyl) react faster with representative electrophiles than the equivalent neutral [FeR2(TMEDA)] complexes. FeI species are observed under catalytically relevant conditions with both benzyl and smaller aryl Grignard reagents. The X‐ray structures of [Fe(Bn)3]? and [Fe(Bn)4]? were determined; [Fe(Bn)4]? is the first homoleptic σ‐hydrocarbyl FeIII complex that has been structurally characterized.  相似文献   

13.
In a new oxidative route, Ag+[Al(ORF)4]? (RF=C(CF3)3) and metallic indium were sonicated in aromatic solvents, such as fluorobenzene (PhF), to give a precipitate of silver metal and highly soluble [In(PhF)n]+ salts (n=2, 3) with the weakly coordinating [Al(ORF)4]? anion in quantitative yield. The In+ salt and the known analogous Ga+[Al(ORF)4]? were used to synthesize a series of homoleptic PR3 phosphane complexes [M(PR3)n]+, that is, the weakly PPh3‐bridged [(Ph3P)3In–(PPh3)–In(PPh3)3]2+ that essentially contains two independent [In(PPh3)3]+ cations or, with increasing bulk of the phosphane, the carbene‐analogous [M(PtBu3)2]+ (M=Ga, In) cations. The MI? P distances are 27 to 29 pm longer for indium, and thus considerably longer than the difference between their tabulated radii (18 pm). The structure, formation, and frontier orbitals of these complexes were investigated by calculations at the BP86/SV(P), B3LYP/def2‐TZVPP, MP2/def2‐TZVPP, and SCS‐MP2/def2‐TZVPP levels.  相似文献   

14.
The earth‐metal olefin complex [Ga I (COD)2]+[Al(ORF)4]? (COD=1,5‐cyclooctadiene; RF=C(CF3)3) constitutes the first homoleptic olefin complex of any main‐group metal accessible as a bulk compound. It is straight forward to prepare in good yield and constitutes an olefin complex of a main‐group metal that—similar to many transition‐metals—may adopt the +1 and +3 oxidation states opening potential applications. Crystallographic‐, vibrational‐ and computational investigations give an insight to the atypical bonding between an olefin and a main‐group metal. They are compared to classical transition‐metal relatives.  相似文献   

15.
Developments in the chemistry of weakly coordinating anions enabled isolation of numerous unique metal complexes with unusual ligands. An important example is the family of metal-Fe(CO)5 complexes. In the current paper we present synthesis and thorough characterization of the first truly homoleptic {Cu[Fe(CO)5]2}+ cation obtained as a salt of weakly coordinating [Al(ORF)4] (RF=C(CF3)3) anion. TGA/DSC/MS study show that its decomposition becomes noticeable only above 110 °C, thus it can be stored as powder in air-free conditions for months. The crystal structure of {Cu[Fe(CO)5]2}+ shows strong asymmetry of the cation and very short Cu-CO bonds in comparison to analogous {M[Fe(CO)5]2}+ where M=Ag or Au. Characterization is complemented with analysis of vibrational spectra and extensive DFT calculations which give insight into the energetics of Cu+-Fe(CO)5 systems. Our results show that {Cu[Fe(CO)5]2}+ is homoleptic only as salt of [Al(ORF)4]. Furthermore, in the presence of additional, even weakly basic ligands, the Cu+-Fe(CO)5 bond strength decreases what may contribute to the complex's instability in liquid SO2 or in the presence of [SbF6]. These conclusions point at the key role of selection of proper anion and solvent in stabilization of these types of complexes.  相似文献   

16.
A series of novel α‐fluoroalkyl ammonium salts was obtained from the corresponding cyano compounds or nitriles by reaction with anhydrous HF. Room‐temperature stable trifluoromethyl ammonium salts were obtained in quantitative yield in a one‐step reaction at ambient temperature from the commercially available starting materials BrCN or ClCN. The novel cations [CF3CF2NH3]+, [HCF2CF2NH3]+, and [(NH3CF2)2]2+ were obtained from CF3CN, HCF2CN, and (CN)2, respectively, and anhydrous HF. The aforementioned fluorinated ammonium cations were isolated as room temperature stable [AsF6]? and/or [SbF6]? salts, and characterized by multi‐nuclear NMR and vibrational spectroscopy. The salts [HCF2NH3][AsF6] and [CF3NH3][Sb2F11] were characterized by their X‐ray crystal structure.  相似文献   

17.
Ion‐like ethylzinc(II) compounds with weakly coordinating aluminates [Al(ORF)4]? and [(RFO)3Al‐F‐Al(ORF)3]? (RF=C(CF3)3) were synthesized in a one‐pot reaction and fully characterized by single‐crystal X‐ray diffraction, NMR and vibrational spectroscopy, and by quantum chemical calculations. The catalytic activity of ion‐like Et‐Zn[Al(ORF)4] in intermolecular hydroamination and in the unusual double hydroamination of anilines and alkynes was investigated. Favorable performance was also found in comparison to the Et2Zn/ [PhNMe2H]+[B(C6F5)4]? system generated in situ at lower catalyst loadings of 2.5 mol %.  相似文献   

18.
Trifluoromethylation of AuCl3 by using the Me3SiCF3/CsF system in THF and in the presence of [PPh4]Br proceeds with partial reduction, yielding a mixture of [PPh4][AuI(CF3)2] ( 1′ ) and [PPh4][AuIII(CF3)4] ( 2′ ) that can be adequately separated. An efficient method for the high‐yield synthesis of 1′ is also described. The molecular geometries of the homoleptic anions [AuI(CF3)2]? and [AuIII(CF3)4]? in their salts 1′ and [NBu4][AuIII(CF3)4] ( 2 ) have been established by X‐ray diffraction methods. Compound 1′ oxidatively adds halogens, X2, furnishing [PPh4][AuIII(CF3)2X2] (X=Cl ( 3 ), Br ( 4 ), I ( 5 )), which are assigned a trans stereochemistry. Attempts to activate C? F bonds in the gold(III) derivative 2′ by reaction with Lewis acids under different conditions either failed or only gave complex mixtures. On the other hand, treatment of the gold(I) derivative 1′ with BF3?OEt2 under mild conditions cleanly afforded the carbonyl derivative [AuI(CF3)(CO)] ( 6 ), which can be isolated as an extremely moisture‐sensitive light yellow crystalline solid. In the solid state, each linear F3C‐Au‐CO molecule weakly interacts with three symmetry‐related neighbors yielding an extended 3D network of aurophilic interactions (Au???Au=345.9(1) pm). The high $\tilde \nu $ CO value (2194 cm?1 in the solid state and 2180 cm?1 in CH2Cl2 solution) denotes that CO is acting as a mainly σ‐donor ligand and confirms the role of the CF3 group as an electron‐withdrawing ligand in organometallic chemistry. Compound 6 can be considered as a convenient synthon of the “AuI(CF3)” fragment, as it reacts with a number of neutral ligands L, giving rise to the corresponding [AuI(CF3)(L)] compounds (L=CNtBu ( 7 ), NCMe ( 8 ), py ( 9 ), tht ( 10 )).  相似文献   

19.
A series of gold acetonitrile complexes [Au(NCMe)2]+[WCA]? with weakly coordinating counterions (WCAs) was synthesized by the reaction of elemental gold and nitrosyl salts [NO]+[WCA]? in acetonitrile ([WCA]? = [GaCl4]?, [B(CF3)4]?, [Al(ORF)4]?; RF = C(CF3)3). In the crystal structures, the [Au(NCMe)2]+ units appeared as monomers, dimers, or chains. A clear correlation between the aurophilicity and the coordinating ability of counterions was observed, with more strongly coordinating WCAs leading to stronger aurophilic contacts (distances, C?N stretching frequencies of [Au(NCMe)2]+ units). An attempt to prepare [Au(L)2]+ units, even with less weakly basic solvents like CH2Cl2, led to decomposition of the [Al(ORF)4]? anion and formation of [NO(CH2Cl2)2]+[F(Al(ORF)3)2]?. All nitrosyl reagents [NO]+[WCA]? were generated according to an optimized procedure and were thoroughly characterized by Raman and NMR spectroscopy. Moreover, the to date unknown species [NO]+[B(CF3)3CN]? was prepared. Its reaction with gold unexpectedly produced [Au(NCMe)2]+[Au(NCB(CF3)3)2]?, in which the cyanoborate counterion acts as an anionic ligand itself. Interestingly, the auroborate anion [Au(NCB(CF3)3)2]? behaves as a weakly coordinating counterion, which becomes evident from the crystallographic data and the vibrational spectral characteristics of the [Au(NCMe)2]+ cation in this complex. Ligand exchange in the only room temperature stable salt of this series, [Au(NCMe)2]+[Al(ORF)4]?, is facile and, for example, [Au(PPh3)(NCMe)]+[Al(ORF)4]? can be selectively generated. This reactivity opens the possibility to generate various [AuL1L2]+[Al(ORF)4]? salts through consecutive ligand‐exchange reactions that offer access to a huge variety of AuI complexes for gold catalysis.  相似文献   

20.
We report the synthesis of cyclometalated monoaryl MnIII fluoro complexes using bis(trifluoromethyl)zinc reagent, Zn(CF3)2(DMPU)2, under mild conditions via a reaction pathway that involves initial transmetalation followed by α-fluorine elimination. The formation of difluorocarbene in these reactions was detected by trapping experiments. Such facile difluorocarbene generation from MnIII results in moderate enhancement of difluoropropanation and difluoropropenation of alkenes and alkynes using Zn(CF3)2(DMPU)2 at lower temperature (20–60 °C) and short reaction time, suggesting potential application of manganese(III) perfluoroalkyl complexes as reactive species for carbene transfer reactivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号