首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Complexes [{Ru(CO)Cl(PiPr3)2}2(μ‐2,5‐(CH?CH)2cC4H2E] (E=NR; R=C6H4‐4‐NMe2 ( 10 a ), C6H4‐4‐OMe ( 10 b ), C6H4‐4‐Me ( 10 c ), C6H5 ( 10 d ), C6H4‐4‐CO2Et ( 10 e ), C6H4‐4‐NO2 ( 10 f ), C6H3‐3,5‐(CF3)2 ( 10 g ), CH3 ( 11 ); E=O ( 12 ), S ( 13 )) are discussed. The solid state structures of four alkynes and two complexes are reported. (Spectro)electrochemical studies show a moderate influence of the nature of the heteroatom and the electron‐donating or ‐withdrawing substituents R in 10 a – g on the electrochemical and spectroscopic properties. The CVs display two consecutive one‐electron redox events with ΔE°′=350–495 mV. A linear relationship between ΔE°′ and the σp Hammett constant for 10 a–f was found. IR, UV/Vis/NIR and EPR studies for 10 +– 13 + confirm full charge delocalization over the {Ru}CH?CH‐heterocycle‐CH?CH{Ru} backbone, classifying them as Class III systems according to the Robin and Day classification. DFT‐optimized structures of the neutral complexes agree well with the experimental ones and provide insight into the structural consequences of stepwise oxidations.  相似文献   

3.
Careful optimization of the reaction conditions provided access to the particularly small tetraruthenium macrocycle 2Ru2Ph-Croc, which is composed out of two redox-active divinylphenylene-bridged diruthenium entities {Ru}-1,4-CH=CH-C6H4-CH=CH-{Ru} (Ru2Ph; {Ru} = Ru(CO)Cl(PiPr3)2) and two likewise redox-active and potentially non-innocent croconate linkers. According to single X-ray diffraction analysis, the central cavity of 2Ru2Ph-Croc is shielded by the bulky PiPr3 ligands, which come into close contact. Cyclic voltammetry revealed two pairs of split anodic waves in the weakly ion pairing CH2Cl2/NBu4BArF24 (BArF24 = [B{C6H3(CF3)2-3,5}4] electrolyte, while the third and fourth waves fall together in CH2Cl2/NBu4PF6. The various oxidized forms were electrogenerated and scrutinized by IR and UV/Vis/NIR spectroscopy. This allowed us to assign the individual oxidations to the metal-organic Ru2Ph entities within 2Ru2Ph-Croc, while the croconate ligands remain largely uninvolved. The lack of specific NIR bands that could be assigned to intervalence charge transfer (IVCT) in the mono- and trications indicates that these mixed-valent species are strictly charge-localized. 2Ru2Ph-Croc is hence an exemplary case, where stepwise IR band shifts and quite sizable redox splittings between consecutive one-electron oxidations would, on first sight, point to electronic coupling, but are exclusively due to electrostatic and inductive effects. This makes 2Ru2Ph-Croc a true “pretender”.  相似文献   

4.
Twelve iridium complexes with general formula of Ir(C^N)2(LX) [C^N represents the cyclometalated ligand, i.e. 2‐(2,4‐difluorophenyl) pyridine (dfppy), 2‐phenylpyridine (ppy), dibenzo{f, h}quinoxaline (DBQ); LX stands for β‐diketonate, i.e. acetyl acetonate (acac), 1‐(carbazol‐9‐yl)‐5,5‐dimethylhexane‐2,4‐diketonate (CBDK), 1‐(carbazol‐9‐yl)‐5,5,6,6,7,7,7‐heptafluoroheptane‐2,4‐diketonate (CHFDK), 1‐(N‐ethyl‐carbazol‐3‐yl)‐4,4,5,5,6,6,6‐heptafluorohexane‐1,3‐diketonate (ECHFDK)] are synthesized, characterized and their photophysical properties are systemically studied. In addition, crystals of Ir(DBQ)2(CHFDK) and Ir(DBQ)2(acac) are obtained and characterized by single crystal X‐ray diffraction. The choice of these iridium complexes provides an opportunity for tracing the effect of the triplet energy level of ancillary ligands on the photophysical and electrochemical behaviors. Data show that if the triplet energy level of the β‐diketonate is higher than that of the Ir(C^N)2 fragment and there is no superposition on the state density map, strong 3LC or 3MLCT‐based phosphorescence can be obtained. Alternatively, if the state density map of the two parts are in superposition, the 3LC or 3MLCT‐based transition will be quenched at room temperature. Density functional theory calculations show that these complexes can be divided into two categories. The lowest excited state is mainly determined by C^N but not β‐diketonate when the difference between the triplet energy levels of the two parts is large. However, when this difference is very small, the lowest excited state will be determined by both sides. This provides a satisfactory explanation for the experimental observations.  相似文献   

5.
Compared to tris(2‐phenylpyridine)iridium(III) ([Ir(ppy)3]), iridium(III) complexes containing difluorophenylpyridine (df‐ppy) and/or an ancillary triazolylpyridine ligand [3‐phenyl‐1,2,4‐triazol‐5‐ylpyridinato (ptp) or 1‐benzyl‐1,2,3‐triazol‐4‐ylpyridine (ptb)] exhibit considerable hypsochromic shifts (ca. 25–60 nm), due to the significant stabilising effect of these ligands on the HOMO energy, whilst having relatively little effect on the LUMO. Despite their lower photoluminescence quantum yields compared with [Ir(ppy)3] and [Ir(df‐ppy)3], the iridium(III) complexes containing triazolylpyridine ligands gave greater electrogenerated chemiluminescence (ECL) intensities (using tri‐n‐propylamine (TPA) as a co‐reactant), which can in part be ascribed to the more energetically favourable reactions of the oxidised complex (M+) with both TPA and its neutral radical oxidation product. The calculated iridium(III) complex LUMO energies were shown to be a good predictor of the corresponding M+ LUMO energies, and both HOMO and LUMO levels are related to ECL efficiency. The theoretical and experimental data together show that the best strategy for the design of efficient new blue‐shifted electrochemiluminophores is to aim to stabilise the HOMO, while only moderately stabilising the LUMO, thereby increasing the energy gap but ensuring favourable thermodynamics and kinetics for the ECL reaction. Of the iridium(III) complexes examined, [Ir(df‐ppy)2(ptb)]+ was most attractive as a blue‐emitter for ECL detection, featuring a large hypsochromic shift (λmax=454 and 484 nm), superior co‐reactant ECL intensity than the archetypal homoleptic green and blue emitters: [Ir(ppy)3] and [Ir(df‐ppy)3] (by over 16‐fold and threefold, respectively), and greater solubility in polar solvents.  相似文献   

6.
An electrochromic system based on a self‐assembled dipeptide‐appended redox‐active quinquethiophene π‐gel is reported. The designed peptide‐quinquethiophene consists of a symmetric bolaamphiphile that has two segments: a redox‐active π‐conjugated quinquethiophene core for electrochromism, and peptide motif for the involvement of molecular self‐assembly. Investigations reveal that self‐assembly and electrochromic properties of the π‐gel are strongly dependent on the relative orientation of peptidic and quinquethiophene scaffolds in the self‐assembly system. The colors of the π‐gel film are very stable with fast and controlled switching speed at room temperature.  相似文献   

7.
Model structures of 1,3,5‐triarylbenzenes with a substituted benzene core linked to thienyl or 3,4‐ethylenedioxythienyl (EDOT) terminal groups are studied by electrochemical and in situ ESR/UV/Vis/NIR spectroelectrochemical techniques. Oxidative polymerization of the monomers results in C? C coupling of the thiophene moieties in the 5‐position, forming dimeric structures with bithiophene linkers as the first step. Both the doubly charged protonated dimer and the new dimer formed after proton release are studied in detail for 2,4,6‐tris[2‐(3,4‐ethylenedioxythienyl)]‐1‐methoxybenzene. Quite high stability of the doubly charged σ dimer formed on oxidation with unusual redox behavior at the electrode is observed. Density functional calculations of the molecular structure as well as spectroscopic and electronic properties of charged states in 1,3,5‐triarylbenzene derivatives in the monomeric, dimeric, and oligomeric form are presented. The complex spectroelectrochemical response of a thin solid film formed on the electrode surface upon potentiodynamic polymerization indicates the existence of different charge states of oligomeric structures within the solid matrix.  相似文献   

8.
Deprotonation of aminophosphaalkenes (RMe2Si)2C?PN(H)(R′) (R=Me, iPr; R′=tBu, 1‐adamantyl (1‐Ada), 2,4,6‐tBu3C6H2 (Mes*)) followed by reactions of the corresponding Li salts Li[(RMe2Si)2C?P(M)(R′)] with one equivalent of the corresponding P‐chlorophosphaalkenes (RMe2Si)2C?PCl provides bisphosphaalkenes (2,4‐diphospha‐3‐azapentadienes) [(RMe2Si)2C?P]2NR′. The thermally unstable tert‐butyliminobisphosphaalkene [(Me3Si)2C?P]2NtBu ( 4 a ) undergoes isomerisation reactions by Me3Si‐group migration that lead to mixtures of four‐membered heterocyles, but in the presence of an excess amount of (Me3Si)2C?PCl, 4 a furnishes an azatriphosphabicyclohexene C3(SiMe3)5P3NtBu ( 5 ) that gave red single crystals. Compound 5 contains a diphosphirane ring condensed with an azatriphospholene system that exhibits an endocylic P?C double bond and an exocyclic ylidic P(+)? C(?)(SiMe3)2 unit. Using the bulkier iPrMe2Si substituents at three‐coordinated carbon leads to slightly enhanced thermal stability of 2,4‐diphospha‐3‐azapentadienes [(iPrMe2Si)2C?P]2NR′ (R′=tBu: 4 b ; R′=1‐Ada: 8 ). According to a low‐temperature crystal‐structure determination, 8 adopts a non‐planar structure with two distinctly differently oriented P?C sites, but 31P NMR spectra in solution exhibit singlet signals. 31P NMR spectra also reveal that bulky Mes* groups (Mes*=2,4,6‐tBu3C6H2) at the central imino function lead to mixtures of symmetric and unsymmetric rotamers, thus implying hindered rotation around the P? N bonds in persistent compounds [(RMe2Si)2C?P]2NMes* ( 11 a , 11 b ). DFT calculations for the parent molecule [(H3Si)2C?P]2NCH3 suggest that the non‐planar distortion of compound 8 will have steric grounds.  相似文献   

9.
Three NIR‐emitting neutral IrIII complexes [Ir(iqbt)2(dpm)] ( 1 ), [Ir(iqbt)2(tta)] ( 2 ), and [Ir(iqbt)2(dtdk)] ( 3 ) based on the 1‐(benzo[b]thiophen‐2‐yl)‐isoquinolinate (iqtb) were synthesized and characterized (dpm=2,2,6,6‐tetramethyl‐3,5‐heptanedionate; tta=2‐thienoyltrifluoroacetonate; dtdk=1,3‐di(thiophen‐2‐yl)propane‐1,3‐dionate). The compounds emit between λ=680 and 850 nm with high luminescence quantum yields (up to 16 %). By combining electrochemistry, photophysical measurements, and computational modelling, the relationship between the structure, energy levels, and properties were investigated. NIR‐emitting, solution‐processed phosphorescent organic light‐emitting devices (PHOLEDs) were fabricated using the complexes. The devices show remarkable external quantum efficiencies (above 3 % with 1 ) with negligible efficiency roll‐off values, exceeding the highest reported values for solution‐processible NIR emitters.  相似文献   

10.
The bis(hydride) dimolybdenum complex, [Mo2(H)2{HC(N‐2,6‐iPr2C6H3)2}2(thf)2], 2 , which possesses a quadruply bonded Mo2II core, undergoes light‐induced (365 nm) reductive elimination of H2 and arene coordination in benzene and toluene solutions, with formation of the MoI2 complexes [Mo2{HC(N‐2,6‐iPr2C6H3)2}2(arene)], 3?C6H6 and 3?C6H5Me , respectively. The analogous C6H5OMe, p‐C6H4Me2, C6H5F, and p‐C6H4F2 derivatives have also been prepared by thermal or photochemical methods, which nevertheless employ different Mo2 complex precursors. X‐ray crystallography and solution NMR studies demonstrate that the molecule of the arene bridges the molybdenum atoms of the MoI2 core, coordinating to each in an η2 fashion. In solution, the arene rotates fast on the NMR timescale around the Mo2‐arene axis. For the substituted aromatic hydrocarbons, the NMR data are consistent with the existence of a major rotamer in which the metal atoms are coordinated to the more electron‐rich C?C bonds.  相似文献   

11.
Diastereomeric geminate pairs of chiral bis(2‐oxazoline) ruthenium complexes with bipyridyl‐type N‐heteroaromatics, Λ‐ and Δ‐[Ru(L‐ L)2(iPr‐biox)]2+ (iPr‐biox=(4S,4′S)‐4,4′‐diisopropyl‐2,2′‐bis(2‐oxazoline); L‐ L=2,2′‐bipyridyl (bpy) for 1 Λ and 1 Δ, 4,4′‐dimethyl‐2,2′‐bipyridyl (dmbpy) for 2 Λ and 2 Δ, and 1,10‐phenanthroline (phen) for 3 Λ and 3 Δ), were separated as BF4 and PF6 salts and were subjected to the comparative studies of their stereochemical and photochemical characterization. DFT calculations of 1 Λ and 1 Δ electronic configurations for the lowest triplet excited state revealed that their MO‐149 (HOMO) and MO‐150 (lower SOMO) characters are interchanged between them and that the phosphorescence‐emissive states are an admixture of a Ru‐to‐biox charge‐transfer state and an intraligand excited state within the iPr‐biox. Furthermore, photoluminescence properties of the two Λ,Δ‐diastereomeric series are discussed with reference to [Ru(bpy)3]2+.  相似文献   

12.
《化学:亚洲杂志》2018,13(19):2947-2955
After double deprotonation, 2,6‐diaryl‐p‐benzoquinonodiimidazoles (aryl=4‐tolyl ( I ) or 2‐pyridyl ( II )) were shown to bridge two [Ru(bpy)2]2+ (bpy=2,2‐bipyridine) complex fragments through the imidazolate N and p‐quinone O ( I → 1 2+) or through the imidazolate N and pyridyl N donor atoms ( II → 2 2+). Characterization by crystal structure analysis, 1H/13C NMR spectroscopy, cyclic and differential pulse voltammetry, and spectroelectrochemistry (UV/Vis/NIR, IR, EPR) in combination with TD‐DFT calculations revealed surprisingly different electronic structures for redox systems 1 n and 2 n. Whereas 1 2+ is reduced to a radical complex with considerable semiquinone character, the reduction of 2 2+ with its exclusive N coordination exhibits little spin on the now redox‐innocent quinone moiety, compared with the electron uptake by the pyridyl–imidazolate chelating site. The first of two close‐lying oxidation processes occurs at the bridging heteroquinone ligand, whereas the second oxidation is partly ( 1 4+) or predominantly ( 2 4+) centered on the metal atoms.  相似文献   

13.
The electrochemical, UV/Vis–NIR absorption, and emission‐spectroscopic features of (TBA+)( 1 ) and the corresponding neutral complex 1 were investigated (TBA+=tetrabutylammonium; 1 =[AuIII(Pyr,H‐edt)2]; Pyr,H‐edt2−=pyren‐1‐yl‐ethylene‐1,2‐dithiolato). The intense electrochromic NIR absorption (λmax=1432 nm; ε=13000 M −1 cm−1 in CH2Cl2) and the potential‐controlled visible emission in the range 400–500 nm, the energy of which depends on the charge of the complex, were interpreted on the grounds of time‐dependent DFT calculations carried out on the cis and trans isomers of 1 , 1 , and 1 2−. In addition, to evaluate the nonlinear optical properties of 1 x (x=0, 1), first static hyperpolarizability values βtot were calculated (βtot=78×10−30 and 212×10−30 esu for the cis isomer of 1 and 1 , respectively) and compared to those of differently substituted [Au(Ar,H‐edt)2]x gold dithiolenes [Ar=naphth‐2‐yl ( 2 ), phenyl ( 3 ); x=0, 1].  相似文献   

14.
The tetrabutylammonium (TBA+) salts of square‐planar monoanionic gold complexes of the unsymmetrically substituted Ar,H‐edt2? 1,2‐dithiolene ligands (Ar,H‐edt2?=arylethylene‐1,2‐dithiolato; Ar=phenyl ( 1 ?), 2‐naphthyl ( 2 ?), and 1‐pyrenyl ( 3 ?)) were synthesized and characterized by spectroscopic and electrochemical methods and the corresponding neutral species ( 1 , 2 , and 3 , respectively) were obtained in CH2Cl2 solution at room temperature by diiodine oxidation. The single‐crystal X‐ray diffraction structural data collected for (TBA+)( 2 ?), supported by DFT theoretical calculations, are consistent with the ene‐1,2‐dithiolate form of the ligand and the AuIII oxidation state. All complexes feature intense near‐IR absorptions (at about 1.5 μm) in their neutral states and Vis‐emitting properties in the 400–550 nm range, the energy of which is controlled by the charge of the complex in the case of the 3 ?/ 3 couple. The spectroscopic and electrochemical features of 1 x? and 2 x? (x=0, 1), both in their cis and trans conformations, were investigated by means of DFT and time‐dependent (TD) DFT calculations.  相似文献   

15.
Aromaticity is one of the most important concepts in organic chemistry. A variety of metalla‐aromatic compounds have been recently prepared and in most of those examples, the metal participates only in a monocyclic ring. In contrast, metal‐bridged bicyclic aromatic molecules, in which a metal is shared between two aromatic rings, have been less developed. Herein, we report the first metal‐bridged tricyclic aromatic system, in which the metal center is shared by three aromatic five‐membered rings. These metalla‐aromatics are formed by reaction between osmapentalyne and arene nucleophiles. Experimental results and theoretical calculations reveal that the three five‐membered rings around the osmium center are aromatic. In addition, the broad absorption bands in the UV/Vis absorption spectra of these novel aromatic systems cover almost the entire visible region. This straightforward synthetic strategy may be extended to the synthesis of other metal‐bridged polycyclic aromatics.  相似文献   

16.
17.
18.
Phthalocyanine compounds of novel type based on a bridged bis‐ligand, denoted “intracavity” complexes, have been prepared. Complexation of clamshell ligand 1,1′‐[benzene‐1,2‐diylbis(methanediyloxy)]bis[9(10),16(17),23(24)‐tri‐tert‐butylphthalocyanine] (clam,tBuPc2H4, 1 ) with lanthanide(III) salts [Ln(acac)3] ? n H2O (Ln=Eu, Dy, Lu; acetylacetonate) led to formation of double‐deckers clam,tBuPc2Ln ( 2 a – c ). Formation of high molecular weight oligophthalocyanine complexes was demonstrated as well. The presence of an intramolecular covalent bridge affecting the relative arrangement of macrocycles was shown to result in specific physicochemical properties. A combination of UV/Vis/NIR and NMR spectroscopy, MALDI‐TOF mass‐spectrometry, cyclic voltammetry, and spectroelectrochemistry provided unambiguous characterization of the freshly prepared bis‐phthalocyanines, and also revealed intrinsic peculiarities in the structure–property relationship, which were supported by theoretical calculations. Unexpected NMR activity of the paramagnetic dysprosium complex 2 b in the neutral π‐radical form was observed and examined as well.  相似文献   

19.
Two new compounds, FcCHNC6H4COOH ( 1 ) and FcCHNCH2CH2OH ( 2 ) (Fc=C5H4FeC5H5), have been synthesized and characterized by elemental analyses, IR and 1H NMR spectroscopy, and ESI‐MS. Attempt has been made to explain their quasi‐reversible redox behavior evidenced by cyclic voltammetry using density functional theory (DFT) calculations. Light‐harvesting properties of both the compounds and also the starting material, FcCHO ( 3 ), have been studied using these compounds as photosensitizers in TiO2‐based dye‐sensitized solar cells having either a propylene carbonate‐based electrolyte or ionic liquid electrolyte, namely, 1‐propyl‐3‐methyl imidazolium iodide (PMII). Long‐term stability of the photocurrent output of the cell using compound 1 as photosensitizer has been monitored periodically over 1400 h.  相似文献   

20.
《Chemphyschem》2003,4(8):830-837
High‐level density functional theory computations have been used to estimate the gas‐phase (intrinsic) acidities of the complete series of 1,8‐chalcogen‐bridged naphthalene derivatives. The existence of a chalcogen? chalcogen bond in chalcogen‐bridged naphthalene derivatives plays a crucial role in the intrinsic acidity of the system. For 1,8‐naphthalenediylbis(oxy), where this bond does not exist, the para C? H group is the most acidic site, whereas for the remaining compounds, deprotonation of the ortho CH groups is the most favorable process. Deprotonation of the aromatic rings has a large effect on the strength of the bonds of the five‐membered ring. These effects depend on the nature of the heteroatoms forming the X? Y bridge, and modulate the acidity of the molecule. Also importantly, when one of the heteroatoms is oxygen, ortho and para deprotonation lead to cleavage of the X? Y bridge. This bond fission favors the formation of a CYC (Y=S, Se, Te) three‐membered ring that enhances the stability of the anion and, therefore, increases the acidity of these compounds. We have shown that, whereas this cyclization process is energetically favorable for oxygen‐containing compounds, it is not favorable for the remaining derivatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号