首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Graphitic carbon nitride (g‐C3N4) has been used as photosensitizer to generate reactive oxygen species (ROS) for photodynamic therapy (PDT). However, its therapeutic efficiency was far from satisfactory. One of the major obstacles was the overexpression of glutathione (GSH) in cancer cells, which could diminish the amount of generated ROS before their arrival at the target site. Herein, we report that the integration of Cu2+ and g‐C3N4 nanosheets (Cu2+–g‐C3N4) led to enhanced light‐triggered ROS generation as well as the depletion of intracellular GSH levels. Consequently, the ROS generated under light irradiation could be consumed less by reduced GSH, and efficiency was improved. Importantly, redox‐active species Cu+–g‐C3N4 could catalyze the reduction of molecular oxygen to the superoxide anion or hydrogen peroxide to the hydroxyl radical, both of which facilitated the generation of ROS. This synergy of improved ROS generation and GSH depletion could enhance the efficiency of PDT for cancer therapy.  相似文献   

2.
Efficient photo‐ and piezoelectric‐induced molecular oxygen activation are both achieved by macroscopic polarization enhancement on a noncentrosymmetric piezoelectric semiconductor BiOIO3. The replacement of V5+ ions for I5+ in IO3 polyhedra gives rise to strengthened macroscopic polarization of BiOIO3, which facilitates the charge separation in the photocatalytic and piezoelectric catalytic process, and renders largely promoted photo‐ and piezoelectric induced reactive oxygen species (ROS) evolution, such as superoxide radicals (.O2) and hydroxyl radicals (.OH). This work advances piezoelectricity as a new route to efficient ROS generation, and also discloses macroscopic polarization engineering on improvement of multi‐responsive catalysis.  相似文献   

3.
Hydrogen peroxide and hydroxyl radical, both important members of the reactive oxygen species (ROS) family, can cause serious oxidative damages in biological systems. In order to proclaim and prevent oxidation stress, researches on the biomolecule oxidation induced by H2O2 or OH. are in crucial need. However, due to the high reactivity of ROS, traditional methods are difficult to achieve the in situ quantitative investigations on those reactions involving ROS. In this work, using scanning electrochemical microscopy technique (SECM) in a tip generation‐substrate collection mode (TG‐SC), the controllable release and the high‐efficiency collection of electrogenerated H2O2 were achieved. Compared to ex situ fluorescence method, SECM improved the collection efficiency approximately two times larger. Based on it, SECM combined with surface plasmon resonance (SPR) was employed to in situ monitor the protein oxidation (taking Cu12+? MT as a model) induced by H2O2. OH., which was generated from the interaction between H2O2 and Cu12+? MT, can attack the peptide chain and induced the unrepairable protein oxidation damage. The whole process was quantitatively characterized by SPR, and the linear relationship between SPR dip shift and the amounts of released H2O2 was successfully built. Our work proves that the combined SECM‐SPR technique can realize the in situ quantitative determinations of the biomolecule oxidation induced by ROS, which affords an avenue for further elucidation on the mechanisms of oxidation stress in organisms.  相似文献   

4.
The reactivity of the sulfur‐containing nucleoside 4‐thio‐(2′‐deoxy)‐thymidine usually abbreviated as 4‐thio‐thymidine, (S4‐TdR) under Fenton conditions, ie, in the presence of H2O2 and catalytic amounts of Fe(II), was investigated by UV‐vis spectroscopy and electrospray ionization single and tandem mass spectrometry (ESI‐MS and MS/MS). S4‐TdR hydroxylated on the S atom was found to be a key reaction intermediate, ultimately leading to (2′‐deoxy)‐thymidine usually abbreviated as thymidine, (TdR) as the main reaction product. This finding was in accordance with the outcome of the reaction between S4‐TdR and H2O2, previously investigated in our laboratory. On the other hand, the additional presence of ?OH radicals, induced by the Fe(II)/H2O2 combination, led to the increased generation of another interesting S4‐TdR product, already observed after its reaction with H2O2 alone, ie, the covalent dimer including a S? S bridge between two S4‐TdR molecules. More importantly, multihydroxylated derivatives of S4‐TdR and TdR were detected as peculiar products obtained under Fenton conditions. Among them, a product bearing an OH group both on the methyl group linked to the thymine ring and on the C5 atom of the ring was found to prevail. The results obtained during this study, integrated by those found previously in our laboratory, indicate 4‐thiothymidine as a promising molecular probe for the recognition, through a careful characterization of its reaction products, of the prevailing species among reactive oxygen species (ROS) corresponding to singlet‐state oxygen, hydrogen peroxide, and hydroxylic radical.  相似文献   

5.
Tumor hypoxia greatly suppresses the therapeutic efficacy of photodynamic therapy (PDT), mainly because the generation of toxic reactive oxygen species (ROS) in PDT is highly oxygen‐dependent. In contrast to ROS, the generation of oxygen‐irrelevant free radicals is oxygen‐independent. A new therapeutic strategy based on the light‐induced generation of free radicals for cancer therapy is reported. Initiator‐loaded gold nanocages (AuNCs) as the free‐radical generator were synthesized. Under near‐infrared light (NIR) irradiation, the plasmonic heating effect of AuNCs can induce the decomposition of the initiator to generate alkyl radicals (R.), which can elevate oxidative‐stress (OS) and cause DNA damages in cancer cells, and finally lead to apoptotic cell death under different oxygen tensions. As a proof of concept, this research opens up a new field to use various free radicals for cancer therapy.  相似文献   

6.
Four heteroleptic copper(I) complexes containing phenanthroline and monoanionic nido‐carborane‐diphosphine ligands have been prepared and structurally characterized by various spectroscopic techniques and X‐ray diffraction. These complexes exhibit intense absorptions in the visible range and excited‐state lifetimes on the microsecond scale. Their application in visible‐light‐induced cross‐dehydrogenative coupling reactions was investigated. Preliminary studies showed that one of the four copper(I) complexes is an efficient catalyst for photoinduced oxidative C?H functionalization using oxygen as oxidant. Furthermore, α‐functionalized tertiary amines were obtained in good‐to‐excellent yields by light irradiation (λ>420 nm) of a mixture of our CuI complex, tertiary amines, and a variety of nucleophiles (nitroalkane, acetone, or indoles) under aerobic conditions. Electron paramagnetic resonance measurements provided evidence for the formation of superoxide radical anions (O2??) rather than singlet oxygen (1O2) during these photocatalytic reactions.  相似文献   

7.
The photoreaction type I/type II pathways mediated by zinc(II) 2,9,16,23‐tetrakis[4‐(N‐methylpyridyloxy)]phthalocyanine (ZnPPc4+) was studied in Candida albicans cells. This photosensitizer was strongly bound to C. albicans cells at short times. After 30 min irradiation, 5 μM ZnPPc4+ produced ~5 log decrease in cell viability. Different probes were used to detect reactive oxygen species (ROS) in cell suspensions (~106 CFU mL?1). Singlet molecular oxygen, O2(1Δg), was observed by the reaction with 9,10‐dimethylanthracene (DMA) and tetrasodium 2,2‐(anthracene‐9,10‐diyl)bis(methylmalonate) (ABMM), whereas the nitro blue tetrazolium (NBT) method was used to sense superoxide anion radical (). Moreover, the effects produced by an anoxic atmosphere and cell suspensions in D2O, as well as the addition of sodium azide and mannitol as ROS trapping were evaluated in the PDI of C. albicans. These investigation indicates that O2(1Δg) is generated in the cells, although a minor extension other radical species can also be involved in the PDI of C. albicans mediated by ZnPPc4+.  相似文献   

8.
Owing to their unique, nanoscale related optical properties, nanostructures assembled from molecular photosensitizers (PSs) have interesting applications in phototheranostics. However, most nanostructured PS assemblies are super‐quenched, thus, preventing their use in photodynamic therapy (PDT). Although some of these materials undergo stimuli‐responsive disassembly, which leads to partial recovery of PDT activity, their therapeutic potentials are unsatisfactory owing to a limited ability to promote generation reactive oxygen species (ROS), especially via type I photoreactions (i.e., not by 1O2 generation). Herein we demonstrate that a new, nanostructured phthalocyanine assembly, NanoPcA, has the ability to promote highly efficient ROS generation via the type I mechanism. The results of antibacterial studies demonstrate that NanoPcA has potential PDT applications.  相似文献   

9.
A 1,3‐diphosphacyclobutane‐2,4‐diyl contains a unique unsaturated cyclic unit, and the presence of radical‐type centers have been expected as a source of functionality. This study demonstrates that the P‐heterocyclic singlet biradical captures muonium (Mu=[μ+e?]), the light isotope of a hydrogen radical, to generate an observable P‐heterocyclic paramagnetic species. Investigation of a powder sample of 2,4‐bis(2,4,6‐tri‐t‐butylphenyl)‐1‐t‐butyl‐3‐benzyl‐1,3‐diphosphacyclobutane‐2,4‐diyl using muon (avoided) level‐crossing resonance (μLCR) spectroscopy revealed that muonium adds to the cyclic P2C2 unit. The muon hyperfine coupling constant (Aμ) indicated that the phosphorus atom bearing the t‐butyl group trapped muonium to provide a metastable P‐heterocyclic radical involving the ylidic MuP(<)=C moiety. The observed regioselective muonium addition correlates the canonical formula of 1,3‐diphosphacyclobutane‐2,4‐diyl.  相似文献   

10.
A copper‐catalyzed three‐component reaction of alkenes, acetonitrile, and sodium azide afforded γ‐azido alkyl nitriles by formation of one C(sp3)−C(sp3) bond and one C(sp3)−N bond. The transformation allows concomitant introduction of two highly versatile groups (CN and N3) across the double bond. A sequence involving the copper‐mediated generation of a cyanomethyl radical and its subsequent addition to an alkene, and a C(sp3)−N bond formation accounted for the reaction outcome. The resulting γ‐azido alkyl nitrile can be easily converted into 1,4‐diamines, γ‐amino nitriles, γ‐azido esters, and γ‐lactams of significant synthetic value.  相似文献   

11.
Brain copper imbalance plays an important role in amyloid‐β aggregation, tau hyperphosphorylation, and neurotoxicity observed in Alzheimer's disease (AD). Therefore, the administration of biocompatible metal‐binding agents may offer a potential therapeutic solution to target mislocalized copper ions and restore metallostasis. Histidine‐containing peptides and proteins are excellent metal binders and are found in many natural systems. The design of short peptides showing optimal binding properties represents a promising approach to capture and redistribute mislocalized metal ions, mainly due to their biocompatibility, ease of synthesis, and the possibility of fine‐tuning their metal‐binding affinities in order to suppress unwanted competitive binding with copper‐containing proteins. In the present study, three peptides, namely HWH , HKCH , and HAH , have been designed with the objective of reducing copper toxicity in AD. These tripeptides form highly stable albumin‐like complexes, showing higher affinity for CuII than that of Aβ(1‐40). Furthermore, HWH , HKCH , and HAH act as very efficient inhibitors of copper‐mediated reactive oxygen species (ROS) generation and prevent the copper‐induced overproduction of toxic oligomers in the initial steps of amyloid aggregation in the presence of CuII ions. These tripeptides, and more generally small peptides including the sequence His‐Xaa‐His at the N‐terminus, may therefore be considered as promising motifs for the future development of new and efficient anti‐Alzheimer drugs.  相似文献   

12.
A copper‐catalyzed asymmetric radical oxytrifluoromethylation of alkenyl oxime and Togni's reagent has been successfully developed, thereby providing straightforward access to CF3‐containing isoxazolines bearing α‐tertiary stereocenters with excellent yield and enantioselectivity. The key to success is the rational design of cinchona‐alkaloid‐based sulfonamides as neutral/anionic hybrid ligands to effectively control the stereochemistry in copper‐catalyzed reactions involving free alkyl radical species. The utility of this method is illustrated by efficient transformation of the products into useful chiral CF3‐containing 1,3‐aminoalcohols.  相似文献   

13.
Under mild dual photoredox/copper catalysis, the reaction of N‐alkoxypyridinium salts with readily available silyl reagents (TMSN3, TMSCN, TMSNCS) afforded δ‐azido, δ‐cyano, and δ‐thiocyanato alcohols in high yields. The reaction went through a domino process involving alkoxy radical generation, 1,5‐hydrogen atom transfer (1,5‐HAT) and copper‐catalyzed functionalization of the resulting C‐centered radical. Conditions for catalytic enantioselective δ‐C(sp3)?H cyanation were also documented.  相似文献   

14.
Singlet oxygen (1O2) is the excited state of ground, triplet state, molecular oxygen (O2). Photosensitized 1O2 has been extensively studied as one of the reactive oxygen species (ROS), responsible for damage of cellular components (protein, DNA, lipids). On the other hand, its generation has been exploited in organic synthesis, as well as in photodynamic therapy for the treatment of various forms of cancer. The aim of this review is to highlight the versatility of 1O2, discussing the main bioorganic applications reported over the past decades, which rely on its production. After a brief introduction on the photosensitized production of 1O2, we will describe the main aspects involving the biologically relevant damage that can accompany an uncontrolled, aspecific generation of this ROS. We then discuss in more detail a series of biological applications featuring 1O2 generation, including protein and DNA labelling, cross-linking and biosensing. Finally, we will highlight the methodologies available to tailor 1O2 generation, in order to accomplish the proposed bioorganic transformations while avoiding, at the same time, collateral damage related to an untamed production of this reactive species.  相似文献   

15.
The traditional luminol–H2O2 electrochemiluminescence (ECL) sensing platform suffers from self‐decomposition of H2O2 at room temperature, hampering its application for quantitative analysis. In this work, for the first time we employ iron single‐atom catalysts (Fe‐N‐C SACs) as an advanced co‐reactant accelerator to directly reduce the dissolved oxygen (O2) to reactive oxygen species (ROS). Owing to the unique electronic structure and catalytic activity of Fe‐N‐C SACs, large amounts of ROS are efficiently produced, which then react with the luminol anion radical and significantly amplify the luminol ECL emission. Under the optimum conditions, a Fe‐N‐C SACs–luminol ECL sensor for antioxidant capacity measurement was developed with a good linear range from 0.8 μm to 1.0 mm of Trolox.  相似文献   

16.
The visible‐light‐accelerated oxo‐azidation of vinyl arenes with trimethylsilylazide and molecular oxygen as stoichiometric oxidant was achieved. In contrast to photocatalysts based on iridium, ruthenium, or organic dyes, [Cu(dap)2]Cl or [Cu(dap)Cl2] were found to be unique for this transformation, which is attributed to their ability to interact with the substrates through ligand exchange and rebound mechanisms. CuII is proposed as the catalytically active species, which upon coordinating azide will undergo light‐accelerated homolysis to form CuI and azide radicals. This activation principle (CuII‐X→CuI+X.) opens up new avenues for copper‐based photocatalysis.  相似文献   

17.
The selective radical/radical cross‐coupling of two different organic radicals is a great challenge due to the inherent activity of radicals. In this paper, a copper‐catalyzed radical/radical C? H/P? H cross‐coupling has been developed. It provides a radical/radical cross‐coupling in a selective manner. This work offers a simple way toward β‐ketophosphonates by oxidative coupling of aryl ketone o‐acetyloximes with phosphine oxides using CuCl as catalyst and PCy3 as ligand in dioxane under N2 atmosphere at 130 °C for 5 h, and yields ranging from 47 % to 86 %. The preliminary mechanistic studies by electron paramagnetic resonance (EPR) showed that, 1) the reduction of ketone o‐acetyloximes generates iminium radicals, which could isomerize to α‐sp3‐carbon radical species; 2) phosphorus radicals were generated from the oxidation of phosphine oxides. Various aryl ketone o‐acetyloximes and phosphine oxides were suitable for this transformation.  相似文献   

18.
Inspired by copper‐based oxygen reduction biocatalysts, we have studied the electrocatalytic behavior of a Cu‐based MOF (Cu‐BTT) for oxygen reduction reaction (ORR) in alkaline medium. This catalyst reduces the oxygen at the onset (Eonset) and half‐wave potential (E1/2) of 0. 940 V and 0.778 V, respectively. The high halfway potential supports the good activity of Cu‐BTT MOF. The high ORR catalytic activity can be interpreted by the presence of nitrogen‐rich ligand (tetrazole) and the generation of nascent copper(I) during the reaction. In addition to the excellent activity, Cu‐BTT MOF showed exceptional stability too, which was confirmed through chronoamperometry study, where current was unchanged up to 12 h. Further, the 4‐electrons transfer of ORR kinetics was confirmed by hydrodynamic voltammetry. The oxygen active center namely copper(I) generation during ORR has been understood by the reduction peak in cyclic voltammetry as well in the XPS analysis.  相似文献   

19.
An organic‐based photocatalysis system for water oxidation, with visible‐light harvesting antennae, was constructed using periodic mesoporous organosilica (PMO). PMO containing acridone groups in the framework (Acd‐PMO), a visible‐light harvesting antenna, was supported with [RuII(bpy)32+] complex (bpy=2,2′‐bipyridyl) coupled with iridium oxide (IrOx) particles in the mesochannels as photosensitizer and catalyst, respectively. Acd‐PMO absorbed visible light and funneled the light energy into the Ru complex in the mesochannels through excitation energy transfer. The excited state of Ru complex is oxidatively quenched by a sacrificial oxidant (Na2S2O8) to form Ru3+ species. The Ru3+ species extracts an electron from IrOx to oxidize water for oxygen production. The reaction quantum yield was 0.34 %, which was improved to 0.68 or 1.2 % by the modifications of PMO. A unique sequence of reactions mimicking natural photosystem II, 1) light‐harvesting, 2) charge separation, and 3) oxygen generation, were realized for the first time by using the light‐harvesting PMO.  相似文献   

20.
The generation of oxygen‐containing functionalities on pristine carbon surfaces is investigated and shown to be light sensitive, specifically to infra‐red radiation. A mechanistic route involving singlet oxygen, 1O2, is proposed and evidenced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号