首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper is a review of my 40 years of research at Kyoto, Sagamihara, and Yokohama, all based on the generation of hyper‐coordinate metal species such as ate complexes and pentacoordinate silicates. The topics are: (i) carbenoid reagents for carbon–carbon bond‐forming reactions, (ii) nucleophilic substitution at acetal carbons using aluminate reagents, (iii) preparation of magnesium enolates and its reaction with nitriles, (iv) Cr(II) reagents for reduction of organic halides and highly selective carbon–carbon bond formation, (v) organic synthesis with organosilion reagents/fluoride ions, (vi) cross‐coupling reaction of organosilicon compounds, and (vii) silicon‐based conjugate addition to α,β‐unsaturated carbonyl acceptors. © 2008 The Japan Chemical Journal Forum and Wiley Periodicals, Inc. Chem Rec 8: 337–350; 2008: Published online in Wiley InterScience ( www.interscience.wiley.com ) DOI 10.1002/tcr.20162  相似文献   

2.
The direct α‐siladifluoromethylation of lithium enolates with the Ruppert–Prakash reagent (CF3TMS) is shown to construct the tertiary and quaternary carbon centers. The Ruppert–Prakash reagent, which is versatile for various trifluoromethylation as a trifluoromethyl anion (CF3?) equivalent, can be employed as a siladifluoromethyl cation (TMSCF2+) equivalent by C?F bond activation due to the strong interaction between lithium and fluorine atoms.  相似文献   

3.
Inspired by hydrophobic interface, a novel design of “polysulfide‐phobic” interface was proposed and developed to restrain shuttle effect in lithium–sulfur batteries. Two‐dimensional VOPO4 sheets with adequate active sites were employed to immobilize the polysulfides through the formation of a V?S bond. Moreover, owing to the intrinsic Coulomb repulsion between polysulfide anions, the surface anchored with polysulfides can be further evolved into a “polysulfide‐phobic” interface, which was demonstrated by the advanced time/space‐resolved operando Raman evidences. In particular, by introducing the “polysulfide‐phobic” surface design into separator fabrication, the lithium–sulfur battery performed a superior long‐term cycling stability. This work expands a novel strategy to build a “polysulfide‐phobic” surface by “self‐defense” mechanism for suppressing polysulfides shuttle, which provides new insights and opportunities to develop advanced lithium–sulfur batteries.  相似文献   

4.
Double agent: The direct α-difluoromethylation of lithium enolates using an umpolung form of fluoroform as a difluoromethyl carbocation equivalent leads to an all-carbon quaternary center. Late transition metals are not necessary and the reaction involves activation of inert C?F bonds with subsequent C?C bond formation.  相似文献   

5.
The reaction of the arylchlorosilylene–NHC adduct ArSi(NHC)Cl [Ar=2,6‐Trip2‐C6H3; NHC=(MeC)2(NMe)2C] 1 with one molar equiv of LiPH2.dme (dme=1,2‐dimethoxyethane) affords the first 1,2‐dihydrophosphasilene adduct 2 (ArSi(NHC)(H)?PH). The latter is labile in solution and can undergo head‐to‐tail dimerization to give [ArSi(H)PH]2 3 and “free” NHC. Further stabilization of 2 by complexation with {W(CO)5} affords the isolable 1,2‐dihydrophosphasilene–tungsten complex 4 [ArSi(NHC)(H)?P(H)W(CO)5]. Additionally, the new 1‐silyl‐2‐hydrophosphasilene ArSi(NHC)(H)?PSiMe3 5 could be synthesized and structurally characterized. DFT studies confirmed that the Si?P bond in 2 and 4 is mostly zwitterionic with drastically decreased double‐bond character.  相似文献   

6.
《化学:亚洲杂志》2018,13(18):2606-2610
The transition‐metal‐catalyzed formal C−C bond insertion reaction of diazo compounds with monocarbonyl compounds is well established, but the related reaction of 1,3‐diketones instead gives C−H bond insertion products. Herein, we report a protocol for a gold‐catalyzed formal C−C bond insertion reaction of 2‐aryl‐2‐diazoesters with 1,3‐diketones, which provides efficient access to polycarbonyl compounds with an all‐carbon quaternary center. The aryl ester moiety plays a crucial role in the unusual chemoselectivity, and the addition of a Brønsted acid to the reaction mixture improves the yield of the C−C bond insertion product. A reaction mechanism involving cyclopropanation of a gold carbenoid with an enolate and ring‐opening of the resulting donor–acceptor‐type cyclopropane intermediate is proposed. This mechanism differs from that of the traditional Lewis‐acid‐catalyzed C−C bond insertion reaction of diazo compounds with monocarbonyl compounds, which involves a rearrangement of a zwitterion intermediate as a key step.  相似文献   

7.
Lithium 1,3-bis(2,6-diisopropylphenyl)-1,3,2-diazaborolidinyl-2-uide activates the C−F linkage of fluoroform (CF3H) to provide air-stable difluoromethylborane compounds. Computational analysis of SN2-type transition state for the C−F bond activation of fluoroform with boryllithium clarifies the mechanism involving the lithium dimeric species in the pre-reaction complex. FAMT (=3-fluoro-l -α-methyl-tyrosine)-based difluoromethyl-BNCT (boron neutron capture therapy) drug candidates is thus produced by the present C−F bond activation.  相似文献   

8.
Under the catalysis of Cu(OTf)2 in refluxing CH2Cl2, ethyl α‐dizao α‐(diethylphosphoryl)acetate was shown to undergo a new cyclization reaction to afford a pentacovalent oxaphosphirane product. The reaction is proposed to occur through the addition of the P=O double bond to the copper carbenoid, followed by the hydrolysis of the ylide intermediate. Our finding represents the first example on producing oxaphosphiranes from dizao phosphoryl compounds. On the other hand, the corresponding rhodium carbenoid displayed the different reactivity under the same thermal conditions, to produce the β‐propiolactone through the well‐recognized C‐H insertion pathway.  相似文献   

9.
The intermolecular interactions existing at three different sites between phenylacetylene and LiX (X = OH, NH2, F, Cl, Br, CN, NC) have been investigated by means of second‐order Møller?Plesset perturbation theory (MP2) calculations and quantum theory of “atoms in molecules” (QTAIM) studies. At each site, the lithium‐bonding interactions with electron‐withdrawing groups (? F, ? Cl, ? Br, ? CN, ? NC) were found to be stronger than those with electron‐donating groups (? OH and ? NH2). Molecular graphs of C6H5C?CH···LiF and πC6H5C?CH···LiF show the same connectional positions, and the electron densities at the lithium bond critical points (BCPs) of the πC6H5C?CH···LiF complexes are distinctly higher than those of the σC6H5C?CH···LiF complexes, indicating that the intermolecular interactions in the C6H5C?CH···LiX complexes can be mainly attributed to the π‐type interaction. QTAIM studies have shown that these lithium‐bond interactions display the characteristics of “closed‐shell” noncovalent interactions, and the molecular formation density difference indicates that electron transfer plays an important role in the formation of the lithium bond. For each site, linear relationships have been found between the topological properties at the BCP (the electron density ρb, its Laplacian ?2ρb, and the eigenvalue λ3 of the Hessian matrix) and the lithium bond length d(Li‐bond). The shorter the lithium bond length d(Li‐bond), the larger ρb, and the stronger the π···Li bond. The shorter d(Li‐bond), the larger ?2ρb, and the greater the electrostatic character of the π···Li bond. © 2012 Wiley Periodicals, Inc.  相似文献   

10.
CoFe2O4/multiwalled carbon nanotubes (MWCNTs) hybrid materials were synthesized by a hydrothermal method. Field emission scanning electron microscopy and transmission electron microscopy analysis confirmed the morphology of the as‐prepared hybrid material resembling wintersweet flower “buds on branches”, in which CoFe2O4 nanoclusters, consisting of nanocrystals with a size of 5–10 nm, are anchored along carbon nanotubes. When applied as an anode material in lithium ion batteries, the CoFe2O4/MWCNTs hybrid material exhibited a high performance for reversible lithium storage. In particular, the hybrid anode material delivered reversible lithium storage capacities of 809, 765, 539, and 359 mA h g?1 at current densities of 180, 450, 900, and 1800 mA g?1, respectively. The superior performance of CoFe2O4/MWCNTs hybrid materials could be ascribed to the synergistic pinning effect of the wintersweet‐flower‐like nanoarchitecture. This strategy could also be applied to synthesize other metal oxide/CNTs hybrid materials as high‐capacity anode materials for lithium ion batteries.  相似文献   

11.
We have developed a one‐pot annulation reaction of monocarba‐closo‐dodecaborate with cyclic diaryliodonium salts to afford biaryl‐fused derivatives. Aryl functionalities are introduced at both the 1‐carbon and unreactive ortho‐boron vertices of the “σ‐aromatic” carborane cage without the need for pre‐functionalization. DFT calculations revealed that the palladium‐catalyzed C?B bond‐formation step in this process proceeds through a concerted metalation–deprotonation (CMD)‐type pathway for the B?H bond disconnection on the aromatic cage, though such bonds are generally regarded as hydridic.  相似文献   

12.
The present study reports the evidence for the multiple carbon–carbon bond insertion into the metal–heteroatom bond via a five‐coordinate metal complex. Detailed analysis of the model catalytic reaction of the carbon–sulfur (C? S) bond formation unveiled the mechanism of metal‐mediated alkyne insertion: a new pathway of C? S bond formation without preliminary ligand dissociation was revealed based on experimental and theoretical investigations. According to this pathway alkyne insertion into the metal–sulfur bond led to the formation of intermediate metal complex capable of direct C? S reductive elimination. In contrast, an intermediate metal complex formed through alkyne insertion through the traditional pathway involving preliminary ligand dissociation suffered from “improper” geometry configuration, which may block the whole catalytic cycle. A new catalytic system was developed to solve the problem of stereoselective S? S bond addition to internal alkynes and a cost‐efficient Ni‐catalyzed synthetic procedure is reported to furnish formation of target vinyl sulfides with high yields (up to 99 %) and excellent Z/E selectivity (>99:1).  相似文献   

13.
Isonitrile 1 due to its carbene‐like reactivity serves generally as a one‐carbon synthon in a diverse set of organic transformations. We report in this article that the isocyano group can also act as a polarized triple bond to undergo, as a two‐atom synthon, heteroannulation with primary propargylamines 15 . In addition, we serendipitously discovered that the reaction pathways can be modulated by simply changing the catalyst loading. In the presence of 0.1 equiv of Yb(OTf)3 or TfOH, the reaction between 1 and 15 afforded exclusively imidazoles 16 by a formal [3+2] cycloaddition. At a higher catalyst loading (Yb(OTf)3 (0.4 equiv) or TfOH (0.5 equiv)) under otherwise identical conditions, the same reaction furnished 1,6‐dihydropyrimidines 17 in good to excellent yields by way of a formal [4+2] cycloaddition process. Mechanistic investigations indicated that both annulations went through an amidine intermediate resulting from the insertion of the isocyano group to the NH bond of the primary amine. Subsequent catalyst‐loading‐dependent 5‐exo‐dig or 6‐endo‐dig cyclization provided selectively the two heterocycles, respectively.  相似文献   

14.
Temperature measurements in biology and medical diagnostics, along with sensitive temperature probing of living cells, is of great importance; however, it still faces significant challenges. Herein, a novel “turn‐on” carbon‐dot‐based fluorescent nanothermometry device for spatially resolved temperature measurements in living cells is presented. The carbon nanodots (CNDs) are prepared by a green microwave‐assisted method and exhibit red fluorescence (λem=615 nm) with high quantum yields (15 %). Then, an on–off fluorescent probe is prepared for detecting glutathione (GSH) based on aggregation‐induced fluorescence quenching. Interestingly, the quenched fluorescence could be recovered by increasing temperature and the CNDs–GSH mixture could behave as an off–on fluorescent probe for temperature. Thus, red‐emitting CNDs can be utilized for “turn‐on” fluorescent nanothermometry through the fluorescence quenching and recovery processes, respectively. We employ MC3T3‐E1 cells as an example model to demonstrate the red‐emitting CNDs can function as “non‐contact” tools for the accurate measurement of temperature and its gradient inside a living cell.  相似文献   

15.
Diels‐Alder cycloaddition reaction is useful for generation of covalent derivatives of fullerenes. Diels‐Alder reactions of C70 and dienes usually take place at the carbon‐carbon bond that has a short bond length in C70, while the bonds with long lengths are generally unreactive. In this paper, we investigated the reactivities of Li+@C70 and Li@C70 toward Diels‐Alder reactions with cyclohexadiene by means of density functional theory calculations. We found that the thermodynamic and kinetic reactivities of the fullerene cage are changed significantly after the encapsulation of the lithium ion or atom. The encapsulated lithium ion causes a remarkable decrease of the activation barrier for the cycloaddition reaction, which can be ascribed to the enhanced orbital interaction between cyclohexadiene and the fullerene cage. The unreactive bond with a long length in C70 is activated efficiently after the encapsulation of the lithium atom. According to the activation‐strain model analysis, the improved reactivity of the long bond is associated with the small deformation energy and large interaction energy of the reactants. Unlike conventional Diels‐Alder reactions that proceed through concerted mechanism, the reaction of Li@C70 and cyclohexadiene undergoes an unusual stepwise mechanism because of the open‐shell electronic structure of Li@C70.  相似文献   

16.
C(sp)–C(sp2) bond formation via Sonogashira cross‐coupling reactions on 6‐halo‐2‐cyclopropyl‐3‐(pyridyl‐3‐ylmethyl)quinazolin‐4(3H )‐ones with appropriate alkynes was explored. Optimization of reaction conditions with various catalysts, ligands, bases, and solvents was conducted. The combination of PdCl2(MeCN)2 with X‐Phos proved to be the best metal–ligand system for this conversion in the presence of triethylamine (Et3N) in tetrahydrofuran at room temperature for iodosubstrates, at 80°C for the bromosubstrates in 8 h, and also for the chlorosubstrates in 16 h. We also demonstrated synthesis of a successful diversity‐oriented synthesis library of highly functionalized quinazolinones via Cu‐free Sonogashira coupling of diverse aryl halides and azido‐alkyne (“click”) ligation reactions with substituted azides. The library exhibited significant antimicrobial activity when screened against several microorganisms.  相似文献   

17.
Reaction pathways of the Simmons-Smith reaction   总被引:1,自引:0,他引:1  
The cyclopropanation reaction of an alkene with a metal carbenoid has been studied by means of the B3LYP hybrid density functional method. The cyclopropanation of ethylene with a lithium carbenoid or a zinc carbenoid [Simmons-Smith (SS) reagent] goes through two competing pathways, methylene transfer and carbometalation. Both processes are fast for the lithium carbenoid, while, for the zinc carbenoid, only the former is fast enough to be experimentally feasible. The reaction of an SS reagent (ClZnCH(2)Cl) with ethylene and an allyl alcohol in the presence of ZnCl(2) was also studied. The allyl alcohol reaction was modeled with an SS reagent/alkoxide complex (ClCH(2)ZnOCH(2)CH=CH(2)) formed from the SS reagent and allyl alcohol. Two modes of acceleration were found. The first involves the well-accepted mechanism of 1,2-chlorine migration, and the second involves a five-centered bond alternation. The latter was found to be more facile than the former and to operate equally well both with ethylene and with aggregates of SS reagent/alkoxide complexes. Calculations on the SS reaction with 2-cyclohexen-1-ol offer a reasonable model for the hydroxy-directed diastereoselective SS reaction, which has been used for a long time in organic synthesis.  相似文献   

18.
Rollover cyclometalation involves bidentate heterocyclic donors, unusually acting as cyclometalated ligands. The resulting products, possessing a free donor atom, react differently from the classical cyclometalated complexes. Taking advantage of a “rollover”/“retro‐rollover” reaction sequence, a succession of oxidative addition and reductive elimination in a series of platinum(II) complexes [Pt(N,C)(Me)(PR3)] resulted in a rare C(sp2)?C(sp3) bond formation to give the bidentate nitrogen ligands 3‐methyl‐2,2′‐bipyridine, 3,6‐dimethyl‐2,2′‐bipyridine, and 3‐methyl‐2‐(2′‐pyridyl)‐quinoline, which were isolated and characterized. The nature of the phosphane PR3 is essential to the outcome of the reaction. This route constitutes a new method for the activation and functionalization of C?H bond in the C(3) position of bidentate heterocyclic compounds, a position usually difficult to functionalize.  相似文献   

19.
Dissipative chemical reactions, which involve oscillatory variations of the concentrations of the intermediates in time, are usually characterized with complicated kinetic mechanisms. However, the essential source of the oscillations can often be reduced to only a few reaction steps providing the alternative domination of the positive and negative feedback loops. In an extreme case such a reduction leads to the so–called “minimal oscillator,” the concept used in the past for the well‐known Belousov‐Zhabotinsky (BZ) reaction. In the present work, we construct such a minimal system for the (discovered by M. Orbán) H2O2–NaSCN–NaOH–CuSO4 homogeneous oscillator, in which instabilities originate from kinetic mechanism substantially different from that proposed for the BZ system. The methodology involves intuitive analysis of the reaction mechanism, supported by numerical calculations and spectrophotometric measurements. We show how the actual, only three‐variable model evolves from our previously elaborated: nine‐ and five–variable mechanisms and prove that its further reduction to two–variable one is not possible. Thus the present work is a final step in our searches for the “minimal Orbán oscillator”.  相似文献   

20.
The nature of the interactions of cyanide with lithium and hydrogen halides was investigated using ab initio calculations and topological analysis of electron density. The computed properties of the lithium‐bonded complexes RCN···LiX (R = H, F, Cl, Br, C?CH, CH?CH2, CH3, C2H5; X = Cl, Br) were compared with those of corresponding hydrogen‐bonded complexes RCN···HX. The results show that both types of intermolecular interactions are “closed‐shell” noncovalent interactions. The effect of substitution on the interaction energy and electron density at the bond critical points of the lithium and hydrogen bonding interactions is similar. In comparison, the interaction energies of lithium‐bonded complexes are more negative than those of hydrogen‐bonded counterparts. The electrostatic interaction plays a more important role in the lithium bond than in the hydrogen bond. On complex formation, the net charge and energy of the Li atom decrease and the atomic volume increases, while the net charge and energy of the H atom increase and the atomic volume decreases. © 2013 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号