首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The title compound, C17H13NO4, crystallizes in two polymorphic forms, each with two molecules in the asymmetric unit and in the monoclinic space group P21/c. All of the molecules have intramolecular hydrogen bonds involving the amide group. The amide N atoms act as donors to the carbonyl group of the pyrone and also to the methoxy group of the benzene ring. The carbonyl O atom of the amide group acts as an acceptor of the β and β′ C atoms belonging to the aromatic rings. These intramolecular hydrogen bonds have a profound effect on the molecular conformation. In one polymorph, the molecules in the asymmetric unit are linked to form dimers by weak C—H...O interactions. In the other, the molecules in the asymmetric unit are linked by a single weak C—H...O hydrogen bond. Two of these units are linked to form centrosymmetric tetramers by a second weak C—H...O interaction. Further interactions of this type link the molecules into chains, so forming a three‐dimensional network. These interactions in both polymorphs are supplemented by π–π interactions between the chromone rings and between the chromone and methoxyphenyl rings.  相似文献   

2.
A simple protocol to create nanofibers and ‐rings through a rational self‐assembly approach is described. Whereas the melamine–oligo(p‐phenylenevinylene) conjugate 1 a self‐aggregates to form ill‐defined nanostructures, conjugate 1 b , which possesses an amide group as an additional interactive site, self‐aggregates to form 1D nanofibers that induce gelation of the solvent. AFM and XRD studies have shown that dimerization through the melamine–melamine hydrogen‐bonding interaction occurs only for 1 b . Upon complexation with 1/3 equivalents of cyanuric acid (CA), conjugate 1 a provides well‐defined, ring‐shaped nanostructures at micromolar concentrations, which open to form fibrous assemblies at submillimolar concentrations and organogels in the millimolar concentration range. Apparently, the enhanced aggregation ability of 1 a by CA is a consequence of columnar organization of the resulting discotic complex 1 a 3 ? CA. In contrast, coaggregation of 1 b with CA does not provide well‐defined nanostructures, probably due to the interference of complementary hydrogen‐bonding interactions by the amide group.  相似文献   

3.
The title compounds, C10H9N5O·H2O (L1·H2O) and C16H12N6O (L2), were synthesized by solvent‐free aldol condensation at room temperature. L1, prepared by grinding picolinaldehyde with 2,3‐diamino‐3‐isocyanoacrylonitrile in a 1:1 molar ratio, crystallized as a monohydrate. L2 was prepared by grinding picolinaldehyde with 2,3‐diamino‐3‐isocyanoacrylonitrile in a 2:1 molar ratio. By varying the conditions of crystallization it was possible to obtain two polymorphs, viz. L2‐I and L2‐II; both crystallized in the monoclinic space group P21/c. They differ in the orientation of one pyridine ring with respect to the plane of the imidazole ring. In L2‐I, this ring is oriented towards and above the imidazole ring, while in L2‐II it is rotated away from and below the imidazole ring. In all three molecules, there is a short intramolecular N—H...N contact inherent to the planarity of the systems. In L1·H2O, this involves an amino H atom and the C=N N atom, while in L2 it involves an amino H atom and an imidazole N atom. In the crystal structure of L1·H2O, there are N—H...O and O—H...O intermolecular hydrogen bonds which link the molecules to form two‐dimensional networks which stack along [001]. These networks are further linked via intermolecular N—H...N(cyano) hydrogen bonds to form an extended three‐dimensional network. In the crystal structure of L2‐I, symmetry‐related molecules are linked via N—H...N hydrogen bonds, leading to the formation of dimers centred about inversion centres. These dimers are further linked via N—H...O hydrogen bonds involving the amide group, also centred about inversion centres, to form a one‐dimensional arrangement propagating in [100]. In the crystal structure of L2‐II, the presence of intermolecular N—H...O hydrogen bonds involving the amide group results in the formation of dimers centred about inversion centres. These are linked via N—H...N hydrogen bonds involving the second amide H atom and the cyano N atom, to form two‐dimensional networks in the bc plane. In L2‐I and L2‐II, C—H...π and π–π interactions are also present.  相似文献   

4.
The reaction between 4‐(4‐methyl­phenyl)­but‐3‐en‐2‐one and amino­guanidine produced an unexpected product of formula C12H15N3O, consisting of a carbox­amide moiety joined to a substituted pyrazoline ring at one of the N atoms. The pyrazoline ring adopts a flat‐envelope conformation and the substituted phenyl ring is oriented almost perpendicular to the heterocycle. The carbonyl O atom has partial anionic character as a result of the transfer of π density from the two adjacent sp2 N atoms and is involved in an intermolecular hydrogen bond with the amide group.  相似文献   

5.
The title compound, C12H13NO4, is one of the few examples that exhibits a syn conformation between the amide and ester carbonyl groups of the oxalyl group. This conformation allows the engagement of the amide H atom in an intramolecular three‐centred hydrogen‐bonding S(6)S(5) motif. The compound is self‐assembled by C=O...C=O and amide–π interactions into stacked columns along the b‐axis direction. The concurrence of both interactions seems to be responsible for stabilizing the observed syn conformation between the carbonyl groups. The second dimension, along the a‐axis direction, is developed by soft C—H...O hydrogen bonding. Density functional theory (DFT) calculations at the B3LYP/6‐31G(d,p) level of theory were performed to support the experimental findings.  相似文献   

6.
In the title compound, C16H18N6O, an N‐carbonyl­imidazole derivative of pyrazoline‐1‐carboximid­amide, the π‐electron density of the N atom in the 1‐position on the pyrazoline ring is delocalized through the amidine moiety and the adjacent carbonyl group. The imidazole ring, though coplanar with the rest of the mol­ecule, is deconjugated. The pyrazoline ring adopts a flat‐envelope conformation, having the substituted phenyl ring oriented perpendicular to the mean plane of the heterocycle. Both of the two potential hydrogen‐bond donors are involved in intramolecular hydrogen‐bonding interactions.  相似文献   

7.
The crystal structure of the title compound, C10H13NO, displays an infinite one‐dimensional network composed of primary amide mol­ecules connected by N—H⋯Ozdbnd;C hydrogen bonds involving the anti NH amide H atoms, thus generating a C(4) motif. This network is additionally stabilized by a weak N—H⋯π interaction between the syn‐oriented amide H atom and the aromatic ring of a neighbouring mol­ecule. The distance between the H atom and the ring centroid is 2.50 Å. The amide group and the aryl moiety are nearly perpendicular, forming an intramolecular dihedral angle of 84.69 (6)°.  相似文献   

8.
The synthesis and crystal structure of­Ph3SnO2CCHCHCH:CHCH(O)CHCONHC6H4­CH3·CH2Cl2 are reported. The monomer units­are bridged by the carbonyl oxygen of the amide group, thus forming a polymer in which each tin atom is best described as having a distorted five‐coordinate geometry. There is a relatively strong intramolecular hydrogen bond between the amide hydrogen and the ether oxygen. The in vitro antitumor activities of the title compound against HL‐60, BGC‐823, Bel‐7402, SKOV3, KB and Hela tumor lines are reported. The title compound shows a distinct advantage when the metal (tin) is introduced into the acid.Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

9.
The crystal structure of methyl 2‐acetamido‐2‐deoxy‐β‐d ‐glycopyranosyl‐(1→4)‐β‐d ‐mannopyranoside monohydrate, C15H27NO11·H2O, was determined and its structural properties compared to those in a set of mono‐ and disaccharides bearing N‐acetyl side‐chains in βGlcNAc aldohexopyranosyl rings. Valence bond angles and torsion angles in these side chains are relatively uniform, but C—N (amide) and C—O (carbonyl) bond lengths depend on the state of hydrogen bonding to the carbonyl O atom and N—H hydrogen. Relative to N‐acetyl side chains devoid of hydrogen bonding, those in which the carbonyl O atom serves as a hydrogen‐bond acceptor display elongated C—O and shortened C—N bonds. This behavior is reproduced by density functional theory (DFT) calculations, indicating that the relative contributions of amide resonance forms to experimental C—N and C—O bond lengths depend on the solvation state, leading to expectations that activation barriers to amide cistrans isomerization will depend on the polarity of the environment. DFT calculations also revealed useful predictive information on the dependencies of inter‐residue hydrogen bonding and some bond angles in or proximal to β‐(1→4) O‐glycosidic linkages on linkage torsion angles ? and ψ. Hypersurfaces correlating ? and ψ with the linkage C—O—C bond angle and total energy are sufficiently similar to render the former a proxy of the latter.  相似文献   

10.
The kinetics of the ring‐opening reactions of the 3‐isothiazolones ( 1a–d ) with aqueous 2‐methyl‐2‐propanethiol has been explored at pH 4. The results strongly suggest that the reaction is second order in thiol and third order overall. Extrapolation of the kinetic data gives third‐order rate constants that lie in the order ( 1a ) > ( 1b ) > ( 1c ) > ( 1d ) in line with the known biological activity of these derivatives. The mechanism of the reaction is thought to involve attack by one thiol at the sulfur atom of the isothiazolone with the concomitant hydrogen bonding of a second thiol to the amide nitrogen. Calculations of the structure and electronic properties of the isothiazolones at the RHF 6‐31G** level are supportive. © 2007 Wiley Periodicals, Inc. Int J Chem Kinet 39: 254–260, 2005  相似文献   

11.
The structural model for the title compound, C16H12N2O2, was refined using a multipolar atom model transferred from an experimental electron‐density database. The refinement showed some improvements of crystallographic statistical indices when compared with a conventional spherical neutral‐atom refinement. The title compound adopts a half‐chair conformation. The amide N atom lies almost in the plane defined by the three neighbouring C atoms. In the crystal structure, molecules are linked by weak intermolecular C—H...O and C—H...π hydrogen bonds.  相似文献   

12.
In the title compound, N‐(6‐chloro‐4‐oxo‐3,4‐di­hydro­pteridin‐2‐yl)­‐2,2‐di­methyl­propan­amide, C11H12ClN5O2, the rings in the pterin moiety are planar. The amide carbonyl O atom is in syn‐periplanar conformation while the C—N—C—C propanamide linkage is antiperiplanar. The N—H?N and N—H?O intermolecular hydrogen bonds transform the mol­ecules into infinite chains.  相似文献   

13.
Two new catalytic systems for hydrogen‐atom transfer (HAT) catalysis involving the N?H bonds of titanocene(III) complexes with pendant amide ligands are reported. In a monometallic system, a bifunctional catalyst for radical generation and reduction through HAT catalysis depending on the coordination of the amide ligand is employed. The pendant amide ligand is used to activate Crabtree's catalyst to yield an efficient bimetallic system for radical generation and HAT catalysis.  相似文献   

14.
The title dipeptide, 1‐(tert‐butoxy­carbonyl‐d ‐alanyl)‐N‐iso­propyl‐l ‐pipecol­amide or Boc‐d ‐Ala‐l ‐Pip‐NHiPr (H‐Pip‐OH is pipecolic acid or piperidine‐2‐carboxylic acid), C17H31N3­O4, with a d –l heterochiral sequence, adopts a type II′β‐­turn conformation, with all‐trans amide functions, where the C‐terminal amide NH group interacts with the Boc carbonyl O atom to form a classical i+3 i intramolecular hydrogen bond. The Cα substituent takes an axial position [Hα (Pip) equatorial] and the trans pipecolamide function is nearly planar.  相似文献   

15.
The title compound, alternatively known as 3‐acetoxy‐2‐(acetylamino)pyridinium betaine of squaric acid, C13H10N2O6, has been synthesized. The bond distances within the squarate ring indicate two possible resonance structures. The mean planes of the pyridinium and squarate systems are inclined at an angle of 24.0 (2)° with respect to one another due to a strong intramolecular hydrogen‐bonding interaction between the amide NH group and a squarate O atom. In the extended structure, there are additional weak π–π and π–ring interactions, which also stabilize the crystal structure.  相似文献   

16.
In the crystal structure of [Cu(CF3SO3)(C2N3)(C8H7N5)2]·0.5C2H6O, the CuII atom adopts a distorted octahedral geometry, with the basal plane formed by two N atoms of one dipyrimidinyl­amine ligand, one N atom of the second pyrimidine ligand and a nitrile N atom of the dicyan­amide anion [Cu—N = 1.972 (2)–2.021 (2) Å]. The apical positions are occupied by an N atom of the second ligand [Cu—N = 2.208 (2) Å], and an O atom of the tri­fluoro­methane­sulfonate anion [Cu—O = 2.747 (2) Å] at a semi‐coordination distance. Pairs of inversion‐related N—H⋯N hydrogen bonds of the so‐called Watson–Crick type, augmented by two C—H⋯N contacts, link adjacent complexes into an infinite one‐dimensional chain running in the [101] direction.  相似文献   

17.
The crystal structure determination of the dinicotinamidium squarate salt, 2C6H7N2O+·C4O42−, is reported, with the squarate dianion residing on an inversion centre and the unique cation in a general position. Salt formation occurs by donation of two H atoms from squaric acid to the nicotin­amide base. The crystal packing is derived from three types of hydrogen bonding. The primary hydrogen bond involves a squarate anion O atom and an H atom of the protonated pyridine group of the nicotin­amide, with an N⋯O distance of 2.5760 (13) Å. The second hydrogen bond involves a second anion O atom and an amide H atom, with an N⋯O distance of 2.8374 (14) Å. Thirdly, an intermolecular interaction between two coplanar nicotin­amide moieties occurs between an amide O atom and a symmetry‐related amide H atom, with an N1⋯O3 distance of 2.8911 (15) Å. These hydrogen bonds are also responsible for the planarity of the nicotin­amide moiety in the salt.  相似文献   

18.
In the title compound, C21H18N2OS2, a strong intramolecular N—H...O hydrogen bond [N...O = 2.642 (3) Å] between the amide N atom and the benzoyl O atom forms an almost planar six‐membered ring in the central part of the molecule. In the crystal, molecules are packed through weak N—H...S interactions. Intra‐ and intermolecular hydrogen bonds and van der Waals interactions are the stabilizing forces for the crystal structure.  相似文献   

19.
In the five‐membered ring in the title compound, (2‐amino­ethoxy)­bis(2‐thienyl)­boron, C10H12BNOS2, the B atom is four‐coordinate with dimensions N—B 1.654 (3), O—B 1.479 (3), and C—B 1.606 (3) and 1.609 (3) Å. An intermolecular hydrogen bond between an amino H atom and the ethoxy O atom links the mol­ecules into infinite chains along the a axis. Only one of the two amino H atoms is involved in hydrogen bonding because there is only the one acceptor atom, the ethoxy O atom, and the molecular geometry precludes formation of a second hydrogen bond by the second amino H atom.  相似文献   

20.
The title compound, C19H21N3O4S, crystallizes in the space group P2/c with two molecules in the asymmetric unit. The conformation of both molecules is very similar and is mainly determined by an intramolecular N—H...O hydrogen bond between a urea N atom and a sulfonyl O atom. The O and second N atom of the urea groups are involved in dimer formation via N—H...O hydrogen bonds. The intramolecular hydrogen‐bonding motif and conformation of the C—SO2—NH(C=O)—NH—C fragment are explored and compared using the Cambridge Structural Database and theoretical calculations. The crystal packing is characterized by π–π stacking between the 5‐cyanobenzene rings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号