首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
We present new results on the liquid–liquid extraction of uranium (VI) from a nitric acid aqueous phase into a tri‐n‐butyl phosphate/1‐butyl‐3‐methylimidazolium bis(trifluoromethylsulfonyl)imide (TBP/[C4mim][Tf2N]) phase. The individual solubilities of the ionic‐liquid ions in the upper part of the biphasic system are measured over the whole acidic range and as a function of the TBP concentration. New insights into the extraction mechanism are obtained through the in situ characterization of the extracted uranyl complexes by coupling UV/Vis and extended X‐ray absorption fine structure (EXAFS) spectroscopy. We propose a chemical model to explain uranium (VI) extraction that describes the data through a fit of the uranyl distribution ratio DU. In this model, at low acid concentrations uranium (VI) is extracted as the cationic complex [UO2(TBP)2]2+, by an exchange with one proton and one C4mim+. At high acid concentrations, the extraction proceeds through a cationic exchange between [UO2(NO3)(HNO3)(TBP)2]+ and one C4mim+. As a consequence of this mechanism, the variation of DU as a function of TBP concentration depends on the C4mim+ concentration in the aqueous phase. This explains why noninteger values are often derived by analysis of DU versus [TBP] plots to determine the number of TBP molecules involved in the extraction of uranyl in an ionic‐liquid phase.  相似文献   

2.
Controlled surface modification of nanocarbons is crucial for their use in applications. The paper deals with the functionalization of carbon nanotubes (CNTs) with HNO3 vapors. Sub‐azeotropic HNO3 + H2O + Mg(NO3)2 solution is used for the generation of nitric acid vapors. Because this approach allows tuning the HNO3 concentration in the vapor phase, the effect of its variation on the surface chemistry and structural properties of the CNTs is investigated. A combination of analytical techniques is applied to evaluate oxidation extent of the CNT surface, selectivity towards the formation of carboxyl groups compared with other oxygenated functionalities, and CNT integrity. The comparison with liquid‐phase functionalization in H2SO4 + HNO3 mixture (1 : 3–3 : 1 v/v), conventionally utilized for oxidizing CNTs, shows that vapor‐phase functionalization affords greater surface oxygen uptakes and higher selectivity towards the formation of carboxyl groups, with smaller tube damage; more importantly, it evidences that, regardless of the method and conditions chosen, the selectivity towards carboxyl groups increases linearly with the surface oxygen concentration. The presented results prove that the product of HNO3 concentration in the vapor‐phase (25–93 wt%) and vapor‐phase functionalization duration (0.5–5 h) controls the surface oxygen concentration. A simple rate model is proposed to account for its increase. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
Extraction of U(VI), Eu(III) and Am(III) has been performed from acidic aqueous solutions (HNO3, HClO4) into the ionic liquid [C4mim][Tf2N] in which a new extracting task-specific ionic liquid, based on the CMPO unit {namely 1-[3-[2-(octylphenylphosphoryl)acetamido]propyl]-3-methyl-1H-imidazol-3-ium bis(trifluoromethane)sulfonamide, hereafter noted OctPh-CMPO-IL}, was dissolved at low concentration (0.01 mol·L?1). EXAFS and UV–Vis spectroscopy measurements were performed to characterize the extracted species. The extraction of U(VI) is more efficient than the extraction of trivalent Am and Eu using this TSIL, for both acids and their concentration range. We obtained evidence that the metal ions are extracted as a solvate (UO2(OctPh-CMPO-IL)3) by a cation exchange mechanism. Nitrate or perchlorate ions do not play a direct role in the extraction by being part of the extracted complexes, but the replacement of nitric acid for perchloric acid entails a drop in the selectivity between U and Eu. However, our TSIL allows a sequential separation of U(VI) and Eu/Am(III) using the same HNO3 concentration and same nature of the organic phase, just by changing the ligand concentration.  相似文献   

4.
A novel method for highly efficient nitric oxide absorption by azole‐based ionic liquid was reported. The NO absorption capacity reached up to 4.52 mol per mol ionic liquid and is significant higher than the capacity other traditional absorbents. Moreover, the absorption of NO by this ionic liquid was reversible. Through a combination of experimental absorption, quantum chemical calculation, NMR and FT‐IR spectroscopic investigation, the results indicated that such high capacity originated from multiple‐site interactions between NO and the anion through the formation of NONOate with the chemical formula R1R2N?(NO?)?N=O, where R1 and R2 are alkyl groups. We believe that this highly efficient and reversible NO absorption by an azole‐based ionic liquid paves a new way for gas capture and utilization.  相似文献   

5.
Attempts to develop new technologies of NO x (NO + NO2) emission reduction are still carried out all around the world. One of the relatively new approaches is the application of ozone injection into the exhaust gas stream followed by the absorption process. Ozone is used to transform NO x to higher nitrogen oxides which yield nitric acid with better effectiveness. The main objective of this paper was to study the influence of mole ratio (MR) O3/NO used in the ozonation process of NO x on the effectiveness of NO x oxidation to higher oxides. The ozonation process was carried out in a flow reactor for concentrations of nitric oxide in the range of 1.5 × 10−5−7.7 × 10−5 mol dm−3 and varying O3/NO mole ratios. Measurements were conducted with the use of a FTIR spectrometer. The results obtained prove that for MR higher than 1, the oxidation effectiveness of nitric oxides generally reaches 95 %, whereas for MR higher than 2, oxidation of NO x to higher nitrogen oxides is completed.  相似文献   

6.
This study combines Fourier transform infrared (FTIR) spectroscopy and temperature‐programmed desorption to examine the evaporation kinetics of thin films of crystalline nitric acid hydrates, solid amorphous H2O/HNO3 mixtures, H2O–ice, ice coated with HCl, and solid HNO3. IR spectroscopy measured the thickness of each film as it evaporated, either at constant temperature or during a linear temperature ramp (temperature‐programmed infrared, TPIR). Simultaneously, a mass spectrometer measured the rate of evaporation directly by monitoring the evolution of the molecules into the gas phase (temperature‐programmed desorption, TPD). Both TPIR and TPD data provide a measurement of the desorption rate and yield the activation energy and preexponential factor for desorption. TPD measurements have the advantage of producing many data points but are subject to interference from experimental difficulties such as uneven heating from the edge of a sample and sample‐support as well as pumping‐speed limitations. TPIR experiments give clean but fewer data points. Evaporation occurred between 170 and 215 K for the various films. Ice evaporates with an activation energy of 12.9 ± 1 kcal/mol and a preexponential factor of 1 × 1032±1.5 molec/cm2 s, in good agreement with the literature. The beta form of nitric acid trihydrate, β–NAT, has an Edes of 15.6 ± 2 kcal/mol with log A = 34.3 ± 2.3; the alpha form of nitric acid trihydrate, α–NAT, is around 17.7 ± 3 kcal/mol with log A = 37.2 ± 4. For nitric acid dihydrate, NAD, Edes is 17.3 ± 2 kcal/mol with log A = 35.9 ± 2.6; for nitric acid monohydrate, NAM, Edes is 13 ± 3 kcal/mol with log A = 31.4 ± 3. The α–NAT converts to β–NAT during evaporation, and the amorphous solid H2O/HNO3 mixtures crystallize during evaporation. The barrier to evaporation for pure nitric acid is 14.6 ± 3 kcal/mol with log A = 34.4 ± 3. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 33: 295–309, 2001  相似文献   

7.
The extraction of uranium(VI) from an aqueous HNO3 phase into an organic phase consisting of a polyurethane foam immobilizing a solution of di(2-ethylhexyl)phosphoric acid (HDEHP) in o-dichlorobenzene has been investigated at varying concentrations of nitric acid and HDEHP. The mechanism of the extraction is discussed on the basis of the results obtained. The aggregation number of HDEHP immobilized on the foam was obtained from the analysis of data obtained for the extraction of cerium(III) from acidic perchlorate solutions of constant ionic strength.  相似文献   

8.
The crystal structure of a new high-temperature phase of nitric acid dihydrate, HNO3·2H2O, has been determined at 225 K by single-crystal X-ray diffraction. The H atom of the nitric acid is delocalized to one water mol­ecule, leading to an association of equimolar NO3 and H5O2+ ionic groups. The asymmetric unit contains two mol­ecules of HNO3·2H2O. The two independent mol­ecules are related by a pseudo-twofold c axis, by a translation of 0.54 (approximately ½) along b , with a mean atomic distance difference of 0.3 Å, except for one H atom of the water mol­ecules (1.5 Å), because of their different orientations in the two mol­ecules. The two independent mol­ecules, linked by strong hydrogen bonds, are arranged in layers. These layers are linked by weaker hydrogen bonds oriented approximately along the c axis. A three-dimensional hydrogen-bond network is observed.  相似文献   

9.
Vapour-liquid and liquid-solid equilibria were studied in the system Th(NO3)4-UO2(NO3)2-HNO3-H2O. Hexahydrate of thorium nitrate as well as hexa- and trihydrate of uranyl nitrate were supposed to be formed in this system. Empiric equations of solubility isotherms were derived for 25 °C and liquid phase densities were determined. It was established that nitric acid was salted out into the vapour phase by the nitrates present in the system both separately and simultaneously. Empiric equation was derived that describes the relationship between the HNO3 concentration of condensate and that of all liquid phase components.  相似文献   

10.
Radiolytic degradation of the TBP-HNO3 system has been studied for the radiation dose range of 19.8 to 262 kGy by the gas chromatographic method. n-Butanol and nitrobutane formed due to irradiation have been identified and estimated in pure TBP, TBP-3M HNO3 extract and TBP-5M HNO3 extract. The G-values (radiation chemical yields) of n-butanol are determined to be 0.28, 0.77 and 0.47 for a pure TBP, TBP-3M HNO3 extract and TBP-5M HNO3 extract, respectively. The G-values of nitrobutane (1-nitrobutane) are 0.55 and 1.09 for TBP-3M HNO3 extract and TBP-5M HNO3 extract. It is found than G(n-butanol) is less for TBP-5M HNO3 extract than for TBP-3M HNO3 extract, while G(nitrobutane) is grater for TBP-5M HNO3 extract than for TBP-3M HNO3 extract. This is explained on the basis of the formation of TBP.HNO3 species and the role played by nitric acid in the TBP phase.  相似文献   

11.
The oxidation of N,N-dimethylhydroxylamine (DMHAN) by nitrous acid is investigated in perchloric acid and nitric acid medium, respectively. The effects of H+, DMHAN, ionic strength and temperature on the reaction are studied. The rate equation in perchloric acid medium has been determined to be −d[HNO2]/dt = k[DMHAN][HNO2], where k = 12.8 ± 1.0 (mol/L)−1 min−1 when the temperature is 18.5 °C and the ionic strength is 0.73 mol/L with an activation energy about 41.5 kJ mol−1. The reaction becomes complicated when it is performed in nitric acid medium. When the molarity of HNO3 is higher than 1.0 mol/L, nitrous acid will be produced via the reaction between nitric acid and DMHAN. The reaction products are analyzed and the reaction mechanism is discussed in this paper.  相似文献   

12.
The rate of nitrogen isotope exchange between NO and HNO3 has been measured as a function of nitric acid concentration of 1.5–4M·1–1. The exchange rate law is shown to beR=k[HNO3]2[N2O3] and the measured activation energy isE=67.78kJ ·M–1 (16.2 kcal·M–1). It is concluded that N2O3 participates in15N/14N exchange between NO and HNO3 at nitric acid concentrations higher than 1.5M·1–1.  相似文献   

13.
Liquid—liquid extraction of divalent palladium by solutions of the hexachloroderivate of cobalt dicarbolide (HBCl6) in the mixture of solvents (30 v/v % nitrobenzene+20 v/v % n-dodecane +50 v/v/ % toluene) from nitric acid medium has been studied. Besides HBCl6 the organic phase contained also 2,2′-dipyridyl (dipy). The yield of palladium extraction from 0.5M HNO3 is greater than 99.0%. The species extracted into the organic phase corresponds to the formula [Pd(dipy)2] (BCl6)2.  相似文献   

14.
A study on solvent extraction of U(VI), Th(IV) and HNO3 from nitric acid media by DEHSO is described. Extraction coefficients of U(VI), Th(IV) and HNO3 as a function of aqueous HNO3 concentration, extractant concentration and temperature have been studied. From the data the compositions of extracted species, equilibrium constants and enthalpies of extraction reaction have been evaluated. Back-extraction of U(VI) and Th(IV) from the organic phase by dilute nitric acid has also been tested. All studies on DEHSO are compared with TBP.  相似文献   

15.
This paper presents a model of the formation of hydrated and solvated ionic pair, nonhydrated monosolvate HNO3 · TBP (tri-n-butylphosphate), hydrated disolvate HNO3 · 2TBP, and semisolvate 2HNO3 · TBP, to which an unlimited number of HNO3 molecules can be added. The equilibrium was calculated using mole fractions. To calculate the mole fraction of free (not bonded to solvates) water, we suggested an equation containing four parameters, three of which are determined from the data for the independent TBP-H2O-diluent system.  相似文献   

16.
The tri-n-butyl phosphate-nitric acid (TBP-HNO3) complex prepared by contacting the pure TBP with the concentrated HNO3 can be used for direct dissolution of lanthanide and actinide oxides in the supercritical fluid carbon dioxide (SCF-CO2). Properties of the TBP-HNO3 complex have been studied. Experimental results showed that when the initial HNO3/TBP volume ratio was varied from 1 : 7 to 5 : 1, the concentration of HNO3 in the TBP-HNO3 complex changed from 1.95 to 5.89 mol/L, the [HNO3]/[TBP] ratio of the TBP-HNO3 complex changed from 0.61 to 2.22, and the content of H20 in the TBP-HNO3 complex changed from 2.02% to 4.19%. All of the density, viscosity and surface tension of the TBP-HNO3 complex changed with the concentration of HNO3 in the complex, and were higher than those of the pure TBE The protons of HNO3 and H2O in the complex underwent rapid exchange to exhibit a singlet resonance peak in nuclear magnetic resonance spectra. When the TBP-HNO3 complex was dissolved in a low dielectric constant solvent, small droplets of HNO3 were formed that can be detected by NMR.  相似文献   

17.
A dicationic imidazolium ionic liquid modified silica stationary phase was prepared and evaluated by reversed‐phase/anion‐exchange mixed‐mode chromatography. Model compounds (polycyclic aromatic hydrocarbons and anilines) were separated well on the column by reversed‐phase chromatography; inorganic anions (bromate, bromide, nitrate, iodide, and thiocyanate), and organic anions (p‐aminobenzoic acid, p‐anilinesulfonic acid, sodium benzoate, pathalic acid, and salicylic acid) were also separated individually by anion‐exchange chromatography. Based on the multiple sites of the stationary phase, the column could separate 14 solutes containing the above series of analytes in one run. The dicationic imidazolium ionic liquid modified silica can interact with hydrophobic analytes by the hydrophobic C6 chain; it can enhance selectivity to aromatic compounds by imidazolium groups; and it also provided anion‐exchange and electrostatic interactions with ionic solutes. Compared with a monocationic ionic liquid functionalized stationary phase, the new stationary phase represented enhanced selectivity owing to more interaction sites.  相似文献   

18.
The distribution of nitric acid between an aqueous phase and a solution of THPO, TcHPO and TOPO in benzene was measured at 25°. The apparent stability constants K1' were found to be 17.2±1.0 (M)-2 for THPO.HNO3, 7.0±0.8 (M)-2 for TcHPO.HNO3 and 15.2 ± I.I (M)-2 for TOPO.HNO3. The stoichionetry of the last complex was confirmed in n-octane solution at constant ionic strength in the aqueous phase.  相似文献   

19.
Recent studies show that nitrous acid, HONO, a significant precursor of the hydroxyl radical in the atmosphere, is formed during the photolysis of nitrogen dioxide in soils. The term nitrous acid is largely used interchangeably in the atmospheric literature, and the analytical methods employed do not often distinguish between the HONO structure (nitrous acid) and HNO2 (nitryl hydride or isonitrous acid). The objective of this study is to determine the thermochemistry of the HNO2 isomer, which has not been determined experimentally, and to evaluate its thermal and atmospheric stability relative to HONO. The thermochemistry of these isomers is also needed for reference and internal consistency in the calculation of larger nitrite and nitryl systems. We review, evaluate, and compare the thermochemical properties of several small nitric oxide and hydrogen nitrogen oxide molecules. The enthalpies of HONO and HNO2 are calculated using computational chemistry with the following methods of analysis for the atomization, isomerization, and work reactions using closed‐ and open‐shell reference molecules. Three high‐level composite methods G3, CBS‐QB3, and CBS‐APNO are used for the computation of enthalpy. The enthalpy of formation, ΔHof(298 K), for HONO is determined as ?18.90 ± 0.05 kcal mol?1 (?79.08 ± 0.2 kJ mol?1) and as ?10.90 ± 0.05 kcal mol?1 (?45.61 ± 0.2 kJ mol?1) for nitryl hydride (HNO2), which is significantly higher than values used in recent NOx combustion mechanisms. H‐NO2 is the weakest bond in isonitrous acid; but HNO2 will isomerize to HONO with a similar barrier to the HO? NO bond energy; thus, it also serves as a source of OH in atmospheric chemistry. Kinetics of the isomerization is determined; a potential energy diagram of H/N/O2 system is presented, and an analysis of the triplet surface is initiated. © 2007 Wiley Periodicals, Inc. Int J Chem Kinet 39: 378–398, 2007  相似文献   

20.
The effect of nitric acid (HNO3) addition on the growth of triglycine sulphate (TGS) crystal has been studied from the aqueous solution for various concentrations of nitric acid. Significant changes in the crystal size and morphology have been observed in all the grown samples. Single crystal and powder X-ray diffraction analyses confirm the structure and cell parameter values of pure and HNO3 doped TGS crystals. FT-Raman and FTIR spectra confirm the characteristics absorption bands of pure and HNO3 doped TGS crystals. The composition of TGS crystals have been confirmed by CHNS analysis. Physical properties such as thermal, dielectric and mechanical studies have been performed for the pure and HNO3 doped TGS crystals. The dielectric constants of the crystals have been studied as a function of frequency. The results suggest that the HNO3 is doped into TGS crystal and that the doping increases its dielectric constant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号