首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The chemoselectivity in the reaction of 2‐diazo‐3‐oxo‐3‐phenylpropanal ( 1 ) with aldehydes and ketones in the presence of Et3N was investigated. The results indicate that 1 reacts with aromatic aldehydes with weak electron‐donating substituents and cyclic ketones under formation of 6‐phenyl‐4H‐1,3‐dioxin‐4‐one derivatives. However, it reacts with aromatic aldehydes with electron‐withdrawing substituents to yield 1,3‐diaryl‐3‐hydroxypropan‐1‐ones, accompanied by chalcone derivatives in some cases. It did not react with linear ketones, aliphatic aldehydes, and aromatic aldehydes with strong electron‐donating substituents. A mechanism for the formation of 1,3‐diaryl‐3‐hydroxypropan‐1‐ones and chalcone derivatives is proposed. We also tried to react 1 with other unsaturated compounds, including various olefins and nitriles, and cumulated unsaturated compounds, such as N,N′‐dialkylcarbodiimines, phenyl isocyanate, isothiocyanate, and CS2. Only with N,N′‐dialkylcarbodiimines, the expected cycloaddition took place.  相似文献   

2.
Hydrolysis of the new types of iminium salts was used to synthesize О,О‐dialkyl‐S‐(1,1‐dimethyl‐2‐oxoethyl)dithiophosphates or 2‐dialkoxythiophosphorylthio‐substituted aldehydes with carbon isochain. Reactions of aldehydes with N‐, N,N‐, and O,N‐nucleophiles gave new phosphorylated imines containing an acetal group at different positions, perhydro‐1,3‐diazol and oxazol with the diisopropoxythiophosphorylthio group in a side chain, and hydrazone of this aldehyde and diphenylphosphinylacetic acid hydrazide.  相似文献   

3.
Chiral ligand (A)‐N,N′‐Bis(2‐hydroxy‐3,5‐di‐tert‐butyl‐arylmethyl)‐1,1′‐binaphthalene‐2,2′‐diamine derived from the reduction of Schiff base (R)‐2,2′‐bis (3,5‐di‐tert‐butyl‐2‐hydroxybenzylideneamino)‐1, 1′‐binaphthyl with LiAlH4, is fairly effective in the asymmetric addition reaction of diethylzinc to aldehydes by which good yields (46%‐94%) of the corresponding sec‐alcohols can be obtained in moderate ee (51%‐79%) with R configuration for a variety of aldehydes.  相似文献   

4.
The condensation of 4‐amino‐5‐mercapto‐3‐(5‐methylisoxazol‐3‐yl)‐1,2,4‐triazole with substituted phenacyl bromide, aldehydes, p‐bromophenylisothiocyanate, aromatic carboxylic acids and oxalic acid, is described. The antibacterial activity of representative compounds was evaluated.  相似文献   

5.
Ten compounds of new (Z)‐5‐((1H‐1,24‐triazol‐1‐yl)methyl)‐3‐arylideneindolin‐2‐ones ( 5a – j ) have been synthesized by the Knoevenagel condensation of 5‐((1H‐1,2,4‐triazol‐1‐ylmethyl)indolin‐2‐one ( 3 ) with 4‐substituted aromatic aldehydes ( 4a – j ).  相似文献   

6.
The regioselective reactions of luminol with 1,3‐cyclohexanedione (or malononitrile) and aromatic aldehydes catalyzed by 2‐1′‐methylimidazolium‐3‐yl‐1‐ethyl sulfate were developed to synthesize 7‐amino‐3,4‐dihydro‐2H‐indazolo[2,1‐b]phthalazine‐1,6,11(13H)‐triones and 3,9‐diamino‐5,10‐dihydro‐5,10‐dioxo‐1H‐pyrazolo[1,2‐b]phthalazine‐2‐carbonitriles in good to excellent yields in short times.  相似文献   

7.
The reactions of (+)‐car‐2‐ene ( 1 ) and (+)‐car‐3‐ene ( 2 ) with aldehydes in the presence of montmorillonite clay were studied for the first time (Schemes 3 and 5). The major products of these reactions are optically active, substituted hexahydroisobenzofurans, probably formed as a result of an attack of the protonated aldehyde at the cyclopropane ring. Quite unexpectedly, the products are cis‐configured at the ring‐fusion site; the fact was established by means of quantum‐chemical calculations and NMR data. It appeared that the behavior of the 2 : 3 mixture 1 / 2 in reactions with aldehydes in the presence of K10 clay differed substantially from the reactivities of the corresponding individual monoterpenes.  相似文献   

8.
An o‐anisidine‐Pd(OAc)2 catalytic system for the direct co‐catalytic Saegusa oxidation of β‐aryl substituted aldehydes to α,β‐unsaturated aldehydes has been developed. The use of o‐anisidine in place of (S)‐diphenylprolinol made the process more simply and cost‐effective. The process not only features the use of unmodified aldehydes rather than enol silyl ethers, but also gives moderate to good yields (44–72 %).  相似文献   

9.
Solvent‐free condensation easily occurred by mixing aromatic aldehydes and 2,3‐dimethyl‐1‐phenyl‐3‐pyrazoline‐5‐one (antipyrine) in the presence of p‐toluenesulfonic acid as a solid acid catalyst at room temperature to give the corresponding disubstituted products as sole products in high yields.  相似文献   

10.
An efficient procedure for the synthesis of N‐alkyl‐2,5‐diaryl‐1,3‐dioxol‐4‐amines 3 via a one‐pot reaction of aromatic aldehydes 2 and alkyl isocyanides 1 at room temperature in good yields is described (Scheme 1, Table).  相似文献   

11.
Zirconium(IV) chloride catalyzed efficient one-pot synthesis of β-amino/β-acetamido carbonyl compounds at room temperature is described. In the presence of ZrCl4, the three-component Mannich-type reaction via a variety of in situ generated aldimines, with various ketones, aromatic aldehydes and aromatic amines in ethanol, led to the formation of β-amino carbonyl compounds and the four-component Mannich-type reaction of aromatic aldehydes with various ketones, acetonitrile and acetyl chloride resulted in the corresponding β-acetamido carbonyl compounds in high to excellent yields. This methodology has also been applied towards the synthesis of dimeric β-amino/β-acetamido carbonyl compounds.  相似文献   

12.
4‐Ethoxycarbonyl‐5‐phenyl‐2,3‐dihydrofuran‐2,3‐dione 1 reacts with aldehydes via the acylketene intermediate 2 giving the 1,3‐dioxin‐4‐ones 3a‐e and the 1,4‐bis(5‐ethoxycarbonyl‐4‐oxo‐6‐phenyl‐4H‐1,3‐dioxin‐2‐yl)benzene 4 , and a one step reaction between dibenzoylmethane and oxalylchloride gave 3,5‐dibenzoyl‐2,6‐diphenyl‐4‐pyrone 7 . The reaction of 1 with dibenzoylmethane, a dicarbonyl compound, provided ethyl 3‐benzoyl‐4‐oxo‐2,6‐diphenylpyran‐5‐carboxylate derivative 9 . Compound 9 was converted into the corresponding ethyl 3‐benzoyl‐4‐hydroxy‐2,6‐diphenylpyridine‐5‐carboxylate derivative 10 via its reaction with ammonium hydroxyde solution in 1 ‐butanol.  相似文献   

13.
Treatment of (Z)‐1,2,3,4‐tetrakis(pinacolatoboryl)but‐2‐ene, prepared from 2,3‐bis(pinacolatoboryl)buta‐1,3‐diene and bis(pinacolato)diboron, with three molar equivalents of aldehyde in toluene at 100 °C gave the 2,3‐bis(alkylidene)alkane‐1,5‐anti‐diol as a single stereoisomer. The reaction is applicable to both aromatic and α‐unbranched aliphatic aldehydes. The 1,5‐anti‐diols were also synthesized by the one‐pot preparation/triple‐aldehyde addition of the tetraborylated butene. Experimental results for the stepwise treatment of the butene with two types of aldehydes suggest that the rate‐determining step of the triple‐aldehyde addition is the third allylation.  相似文献   

14.
Three‐component heterocyclization of 4‐amino‐5‐carboxamido‐1,2,3‐triazole, thiopyran‐3‐one‐1,1‐dioxide, and aromatic aldehydes under ultrasonic and microwave irradiation was studied. Regardless of the reaction parameters, 5,6,7,9‐tetrahydro‐4H‐thiopyrano[3,2‐d][1,2,3]triazolo[1,5‐a]pyrimidine‐8,8‐dioxides were isolated as sole reaction products whose structures were proven with help of NMR data and X‐ray analysis.  相似文献   

15.
A simple and efficient one‐pot four‐component procedure has been developed for the synthesis of a wide range of compounds containing the (triazolyl)methyl oxo‐pyrimidine‐carboxylate system from propargyl β‐keto esters, various azides, aldehydes, and urea in the presence of catalytic amounts of (AcO)2Cu/sodium ascorbate in AcOH. The method worked well with different aryl and heteroaryl aldehydes, and for a variety of substituents in the triazolyl part of the molecule. The antimicrobial activities of the products were evaluated against two Gram‐positive and Gram‐negative bacteria, and one fungus. Compound 5j was active against Staphylococcus aureus and Candida albicans.  相似文献   

16.
The three‐component Biginelli‐like cyclocondensation reaction of enamines 1 , urea, and aldehydes in dioxane/acetic acid efficiently afforded the corresponding 6‐unsubstituted 3,4‐dihydropyrimidin‐2(1H)‐ones 2 in good yields (Scheme 1, Table). The corresponding reaction of azaenamine (=hydrazone) 7 with benzaldehyde and urea afforded 6‐acetyl‐1,2,4‐triazin‐3(2H)‐ones in good yields (Scheme 3).  相似文献   

17.
One‐pot, three‐component condensation of guanidine, ethylbenzoylacetate and various aromatic aldehydes in the presence of NaHCO3 have been investigated by microwave irradiation. The aromatic aldehydes bearing electron‐withdrawing groups undergo condensation with guanidine and ethylbenzoyl‐acetate to afford ethyl‐2‐amino‐4‐aryl‐1,4‐dihydro‐6‐phenylpyrimidine‐5‐carboxylate derivatives via Biginelli reaction. However, reaction of the aromatic aldehydes having electron‐releasing groups with guanidine and ethylbenzoylacetate did not give the corresponding dihydropyrimidines. Instead, novel 2‐amino‐5‐benzoyl‐5,6‐dihydro‐6‐arylpyrimidine‐4(3H)‐ones were obtained via an unexpected mechanism.  相似文献   

18.
Poly[(S)‐3‐vinyl‐2,2′‐dihydroxy‐1,1′‐binaphthyl] (L*) was obtained by taking off the protecting groups of poly[(S)‐3‐vinyl‐2,2′‐bis(methoxymethoxy)‐1,1′‐binaphthyl] (poly‐ 1 ). L* was proved to keep a stable helical conformation in solution. The application of helical L* in the asymmetric addition of diethylzinc to aldehydes has been studied. The catalytic system employing 10 mol% of L* and 150 mol% of Ti(OiPr)4 was found to promote the addition of diethylzinc to a wide range of aromatic aldehydes, giving up to 99% enantiomeric excess (ee) and up to 93% yield of the corresponding secondary alcohol at 0°C. The chiral polymer can be easily recovered and reused without loss of catalytic activity as well as enantioselectivity.  相似文献   

19.
(E )‐δ‐Boryl‐substituted anti ‐homoallylic alcohols are synthesized in a highly diastereo‐ and enantioselective manner from 1,1‐di(boryl)alk‐3‐enes and aldehydes. Mechanistically, the reaction consists of 1) palladium‐catalyzed double‐bond transposition of the 1,1‐di(boryl)alk‐3‐enes to 1,1‐di(boryl)alk‐2‐enes, 2) chiral phosphoric acid catalyzed allylation of aldehydes, and 3) palladium‐catalyzed geometrical isomerization from the Z to E isomer. As a result, the configurations of two chiral centers and one double bond are all controlled with high selectivity in a single reaction vessel.  相似文献   

20.
Stereoselective methods for the synthesis of tetrahydro‐ß‐carbolines are of significant interest due to the broad spectrum of biological activity of the target molecules. In the plant kingdom, strictosidine synthases catalyze the C?C coupling through a Pictet–Spengler reaction of tryptamine and secologanin to exclusively form the (S)‐configured tetrahydro‐ß‐carboline (S)‐strictosidine. Investigating the biocatalytic Pictet–Spengler reaction of tryptamine with small‐molecular‐weight aliphatic aldehydes revealed that the strictosidine synthases give unexpectedly access to the (R)‐configured product. Developing an efficient expression method for the enzyme allowed the preparative transformation of various aldehydes, giving the products with up to >98 % ee. With this tool in hand, a chemoenzymatic two‐step synthesis of (R)‐harmicine was achieved, giving (R)‐harmicine in 67 % overall yield in optically pure form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号