首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hierarchical self‐assembly of an amphiphilic tris‐urea in aqueous media is shown. A mixture of the amphiphilic tris‐urea and an alkaline solution gave a viscous solution composed of fibrous aggregates. This viscous solution transformed into supramolecular hydrogels, which are capable of hierarchically organizing into higher‐order aggregates in response to several cationic triggers. The resulting supramolecular hydrogels were relatively stiff and their storage moduli attained over 103 Pa. The stimuli‐responsive and optical properties of the resulting hydrogels were influenced by the cationic trigger. Proton and calcium ion triggers gave pH‐ and chemical stimuli‐responsive hydrogels, respectively. A terbium ion trigger also provided a highly luminescent hydrogel through energy transfer from the tris‐urea to terbium.  相似文献   

2.
3.
4.
A two-component self-sorting hydrogel based on acylhydrazide and carboxylic acid derivatives of 1,3:2,4-dibenzylidene-d -sorbitol (DBS-CONHNH2 and DBS-COOH) is reported. A heating–cooling cycle induces the self-assembly of DBS-CONHNH2, followed by the self-assembly of DBS-COOH induced by decreasing pH. Although the networks are formed sequentially, there is spectroscopic evidence of interactions between them, which impact on the mechanical properties and significantly enhance the ability of these low-molecular-weight gelators (LMWGs) to form gels when mixed. The DBS-COOH network can be switched “off” and “on” within the two-component gel through a pH change. By using a photo-acid generator, the two-component gel can be prepared combining the thermal trigger with photo-irradiation. Photo-patterned self-assembly of DBS-COOH within a pre-formed DBS-CONHNH2 gel under a mask yields spatially controlled multi-domain gels. Different gel domains can have different functions, for example, controlling the rate of release of heparin incorporated into the gel, or directing gold nanoparticle assembly. Such photo-patterned multi-component hydrogels have potential applications in regenerative medicine or bio-nano-electronics.  相似文献   

5.
6.
Supramolecular hydrogels are a class of self‐assembled network structures formed via non‐covalent interactions of the hydrogelators. These hydrogels capable of responding to external stimuli are considered to be smart materials due to their ability to undergo sol–gel and/or gel–sol transition upon subtle changes in their surroundings. Such stimuli‐responsive hydrogels are intriguing biomaterials with applications in tissue engineering, delivery of cells and drugs, modulating tissue environment to promote innate tissue repair, and imaging for medical diagnostics among others. This review summarizes the recent developments in stimuli‐responsive supramolecular hydrogels and their potential applications in regenerative medicine. Specifically, various structural aspects of supramolecular hydrogelators involved in self‐assembly, the role of external stimuli in tuning/controlling their phase transitions, and how these functions could be harnessed to advance applications in regenerative medicine are focused on. Finally, the key challenges and future prospects for these versatile materials are briefly described.  相似文献   

7.
A methodology for preparing supramolecular hydrogels from guest‐modified cyclodextrins (CDs) based on the host–guest and hydrogen‐bonding interactions of CDs is presented. Four types of modified CDs were synthesized to understand better the gelation mechanism. The 2D ROESY NMR spectrum of β‐CD‐AmTNB (Am=amino, TNB=trinitrobenzene) reveals that the TNB group was included in the β‐CD cavity. Pulsed field gradient NMR (PFG NMR) spectroscopy and AFM show that β‐CD‐AmTNB formed a supramolecular polymer in aqueous solution through head‐to‐tail stacking. Although β‐CD‐AmTNB did not produce a hydrogel due to insufficient growth of supramolecular polymers, β‐CD‐CiAmTNB (Ci=cinnamoyl) formed supramolecular fibrils through host–guest interactions. Hydrogen bonds between the cross‐linked fibrils resulted in the hydrogel, which displayed excellent chemical‐responsive properties. Gel‐to‐sol transitions occurred by adding 1‐adamantane carboxylic acid (AdCA) or urea. 1H NMR and induced circular dichroism (ICD) spectra reveal that AdCA released the guest parts from the CD cavity and that urea acts as a denaturing agent to break the hydrogen bonds between CDs. The hydrogel was also destroyed by adding β‐CD, which acts as the competitive host to reduce the fibrils. Furthermore, the gel changed to a sol by adding methyl orange (MO) as a guest compound, but the gel reappeared upon addition of α‐CD, which is a stronger host for MO.  相似文献   

8.
Despite the remarkable progress made in controllable self‐assembly of stimuli‐responsive supramolecular polymers (SSPs), a basic issue that has not been consideration to date is the essential binding site. The noncovalent binding sites, which connect the building blocks and endow supramolecular polymers with their ability to respond to stimuli, are expected to strongly affect the self‐assembly of SSPs. Herein, the design and synthesis of a dual‐stimuli thermo‐ and photoresponsive Y‐shaped supramolecular polymer (SSP2) with two adjacent β‐cyclodextrin/azobenzene (β‐CD/Azo) binding sites, and another SSP (SSP1) with similar building blocks, but only one β‐CD/Azo binding site as a control, are described. Upon gradually increasing the polymer solution temperature or irradiating with UV light, SSP2 self‐assemblies with a higher binding‐site distribution density; exhibits a flower‐like morphology, smaller size, and more stable dynamic aggregation process; and greater controllability for drug‐release behavior than those observed with SSP1 self‐assemblies. The host–guest binding‐site‐tunable self‐assembly was attributed to the positive cooperativity generated among adjacent binding sites on the surfaces of SSP2 self‐assemblies. This work is beneficial for precisely controlling the structural parameters and controlled release function of SSP self‐assemblies.  相似文献   

9.
Supramolecular structures with strain‐stiffening properties are ubiquitous in nature but remain rare in the lab. Herein, we report on strain‐stiffening supramolecular hydrogels that are entirely produced through the self‐assembly of synthetic molecular gelators. The involved gelators self‐assemble into semi‐flexible fibers, which thereby crosslink into hydrogels. Interestingly, these hydrogels are capable of stiffening in response to applied stress, resembling biological intermediate filaments system. Furthermore, strain‐stiffening hydrogel networks embedded with liposomes are constructed through orthogonal self‐assembly of gelators and phospholipids, mimicking biological tissues in both architecture and mechanical properties. This work furthers the development of biomimetic soft materials with mechanical responsiveness and presents potentially enticing applications in diverse fields, such as tissue engineering, artificial life, and strain sensors.  相似文献   

10.
We report a series of short peptides possessing the sequence (FE)n or (EF)n and bearing l ‐proline at their N‐terminus that self‐assemble into high aspect ratio aggregates and hydrogels. We show that these aggregates are able to catalyze the aldol reaction, whereas non‐aggregated analogues are catalytically inactive. We have undertaken an analysis of the results, considering the accessibility of catalytic sites, pKa value shifts, and the presence of hydrophobic pockets. We conclude that the presence of hydrophobic regions is indeed relevant for substrate solubilization, but that the active site accessibility is the key factor for the observed differences in reaction rates. The results presented here provide an example of the emergence of a new chemical property caused by self‐assembly, and support the relevant role played by self‐assembled peptides in prebiotic scenarios. In this sense, the reported systems can be seen as primitive aldolase I mimics, and have been successfully tested for the synthesis of simple carbohydrate precursors.  相似文献   

11.
For chiral hydrogels and related applications, one of the critical issues is how to control the chirality of supramolecular systems in an efficient way, including easy operation, efficient transfer of chirality, and so on. Herein, supramolecular chirality of l ‐phenylalanine based hydrogels can be effectively controlled by using a broad range of metal ions. The degree of twisting (twist pitch) and the diameter of the chiral nanostructures can also be efficiently regulated. These are ascribed to the synergic effect of hydrogen bonding and metal ion coordination. This study may develop a method to design a new class of electronically, optically, and biologically active materials.  相似文献   

12.
Supramolecular nanoparticles (SNPs) encompass multiple copies of different building blocks brought together by specific noncovalent interactions. The inherently multivalent nature of these systems allows control of their size as well as their assembly and disassembly, thus promising potential as biomedical delivery vehicles. Here, dual responsive SNPs have been based on the ternary host–guest complexation between cucurbit[8]uril (CB[8]), a methyl viologen (MV) polymer, and mono‐ and multivalent azobenzene (Azo) functionalized molecules. UV switching of the Azo groups led to fast disruption of the ternary complexes, but to a relatively slow disintegration of the SNPs. Alternating UV and Vis photoisomerization of the Azo groups led to fully reversible SNP disassembly and reassembly. SNPs were only formed with the Azo moieties in the trans and the MV units in the oxidized states, respectively, thus constituting a supramolecular AND logic gate.  相似文献   

13.
In this work, multifunctional hydrogels with vivid color change and shrinking–swelling response to temperature, ion strength, and alternating magnetic field are fabricated via magnetic assembly. The hydrogels show gradual shift colors from yellowish green to green, cyan, blue, purple, and even reddish violet in response to temperature or ion strength. In the response process, the whole color modulation process is fully reversible and transferable along with a relative short response time. Especially, the magnetism and porous structure of the hybrid hydrogel enable it to be a potential carrier for hydrophobic molecules. Taking advantage of the magnetocaloric responsiveness, the dyed oil loaded hydrogel exhibits a controllable release behavior in each reversible shrinking–swelling cycle under an alternating magnetic field. This multi‐responsive hydrogel can hold promise for practical engineering applications, including sensors, displays, and controlled release.

  相似文献   


14.
A series of primary ammonium monocarboxylate (PAM) salts derived from β‐alanine derivatives of pyrene and naphthalene acetic acid, along with the parent acids, were explored to probe the plausible role of orthogonal hydrogen bonding resulting from amide???amide and PAM synthons on gelation. Single‐crystal X‐ray diffraction (SXRD) studies were performed on two parent acids and five PAM salts in the series. The data revealed that orthogonal hydrogen bonding played an important role in gelation. Structure–property correlation based on SXRD and powder X‐ray diffraction data also supported the working hypothesis upon which these gelators were designed. 3‐(4,5‐Dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide (MTT) and cell migration assay on a highly aggressive human breast cancer cell line, MDA‐MB‐231, revealed that one of the PAM salts in the series, namely, PAA.B2 , displayed anticancer properties, and internalization of the gelator salt in the same cell line was confirmed by cell imaging.  相似文献   

15.
The mixing of a polyacid cross‐linker with a pyridinium‐functionalized anthracene amphiphile afforded a supramolecular hydrogel through a self‐assembly process that was primarily driven by π‐stacking and electrostatic interactions.  相似文献   

16.
By exploiting salt formation, a new series of primary ammonium monocarboxylate salts of a nonsteroidal anti‐inflammatory drug, namely, diflunisal, was synthesized. The majority of the salts thus synthesized turned out to be good gelators of various solvents, including the solvents (e.g., methyl salicylate and pure water) typically used for topical gel formulation. Single‐crystal X‐ray diffraction studies of a few gelator and nongelator salts in the series revealed details of the hydrogen‐bonding networks present in the salts. Furthermore, one such gelator salt, namely, the diflunisal salt of serinol, was found to be biocompatible (MTT assay), and its anti‐inflammatory (PGE2 assay) response turned out to be as good as that of the parent drug, which is indicative of its potential in biomedical applications.  相似文献   

17.
Spatiotemporal control of fluidity inside a soft matrix by external stimuli allows real‐time manipulation of nano/micromaterials. In this study, we report a two‐photon‐responsive peptide‐based supramolecular hydrogel, the fluidity of which was dramatically controlled with high spatial resolution (10 μm×10 μm×10 μm). The off–on switching of the Brownian motion of nanobeads and chemotaxis of bacteria by two‐photon excitation was successfully demonstrated.  相似文献   

18.
Mixtures of N‐alkyl pyridinium compounds [py‐N‐(CH2)nOC6H3‐3,5‐(OMe)2]+(X?) ( 1b Cl: n=10, X=Cl; 1c Br: n=12, X=Br) and α‐cyclodextrin (α‐CD) form supramolecular hydrogels in aqueous media. The concentrations of the two components influences the sol–gel transition temperature, which ranges from 7 to 67 °C. Washing the hydrogel with acetone or evaporation of water left the xerogel, and 13C CP/MAS NMR measurements, powder X‐ray diffraction (XRD), and scanning electron microscopy (SEM) revealed that the xerogel of 1b Cl (or 1c Br) and α‐CD was composed of pseudorotaxanes with high crystallinity. 13C{1H} and 1H NMR spectra of the gel revealed the detailed composition of the components. The gel from 1b Cl and α‐CD contains the corresponding [2]‐ and [3]pseudorotaxanes, [ 1b? (α‐CD)]Br and [ 1b? (α‐CD)2]Br, while that from 1c Br and α‐CD consists mainly of [3]pseudorotaxane [ 1c? (α‐CD)2]Br. 2D ROESY 1H NMR measurements suggested intermolecular contact of 3,5‐dimethoxyphenyl and pyridyl end groups of the axle component. The presence of the [3]pseudorotaxane is indispensable for gel formation. Thus, intermolecular interaction between the end groups of the axle component and that between α‐CDs of the [3]pseudorotaxane contribute to formation of the network. The supramolecular gels were transformed into sols by adding denaturing agents such as urea, C6H3‐1,3,5‐(OH)3, and [py‐NnBu]+(Cl?).  相似文献   

19.
Both molecular and crystal‐engineering approaches were exploited to synthesize a new class of multidrug‐containing supramolecular gelators. A well‐known nonsteroidal anti‐inflammatory drug, namely, indomethacin, was conjugated with six different l ‐amino acids to generate the corresponding peptides having free carboxylic acid functionality, which reacted further with an antiviral drug, namely, amantadine, a primary amine, in 1:1 ratio to yield six primary ammonium monocarboxylate salts. Half of the synthesized salts showed gelation ability that included hydrogelation, organogelation and ambidextrous gelation. The gels were characterized by table‐top and dynamic rheology and different microscopic techniques. Further insights into the gelation mechanism were obtained by temperature‐dependent 1H NMR spectroscopy, FTIR spectroscopy, photoluminescence and dynamic light scattering. Single‐crystal X‐ray diffraction studies on two gelator salts revealed the presence of 2D hydrogen‐bonded networks. One such ambidextrous gelator (capable of gelling both pure water and methyl salicylate, which are important solvents for biological applications) was promising in both mechanical (rheoreversible and injectable) and biological (self‐delivery) applications for future multidrug‐containing injectable delivery vehicles.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号