首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The celebrated Lambert-Beer law of light absorption in photochromic media is only valid at low intensities of incident light and low concentration of chromophore. Here we address the generic problem of photoabsorption dynamics, experimentally studying the case of azobenzene isomerization. We show that the nonlinear regime is very common and easy to achieve in many practical situations, especially in thick samples where the light depletes the chromophore in the first layers and can propagate through the medium with a subexponential law. This result holds not only for azobenzene isomerization but for all photochromic processes. Importantly, the crossover into the nonlinear absorption regime only weakly depends on the dye concentration and solution viscosity. We experimentally quantify the characteristics of this peculiar optical response and determine the key transition rate constants.  相似文献   

2.
Abstract— a-Isorhodopsin, an artificial visual pigment with a 9- cis -4,5-dehydro-5,6-dihydro(a)retinal chromophore, was photolyzed at low temperatures and absorption difference spectra were collected as the sample was warmed. A bathorhodopsin (Batho)-like intermediate absorbing at ca 495 nm was detected below 55 K, a blue-shifted intermediate (BSI)-like intermediate absorbing at ca 453 nm was observed when the temperature was raised to 60 K and a lumirhodopsin (Lumi)-like intermediate absorbing at ca 470 nm was found when the sample was warmed to 115 K. Photointermediates from this pigment were compared to those of native rhodopsin and 5,6-dihydroisorhodopsin. As in native rho-dopsin, Batho is the first intermediate detected in a-isorhodopsin, though unlike native rhodopsin at low temperatures BSI is observed prior to Lumi formation. a-Isorhodopsin behaves similarly to 5,6-dihydroisorhodopsin, with the same early intermediates observed in both artificial visual pigments lacking the C5-C6 double bond. The transition temperature for BSI formation is higher in a-isorhodopsin, suggesting an interaction involving the chromophore ring in BSI formation. The transition temperature for Lumi formation is similar for these two pigments as well as for native rhodopsin, suggesting comparable changes in the protein environment in that transition.  相似文献   

3.
近红外光谱用于低温水结构的分析   总被引:1,自引:0,他引:1  
采用近红外光谱分析并结合拉曼光谱和分子动力学模拟研究了二甲基亚砜(DMSO)-水混合物中水在低温时的结构,对DMSO降低水冰点的机理进行了讨论.通过对不同DMSO含量混合物的近红外和拉曼光谱分析,发现了DMSO与水相互作用的光谱信息,表明DMSO与水在混合物中主要以摩尔比1∶2和2∶1的氢键结构(DW2和D2W)的形式存在,结构形式主要取决于DMSO和水在混合物中的比例.通过对水和30%(摩尔分数)DMSO-水混合物的温控近红外光谱分析,发现DW2结构抑制四面体水结构的形成是混合物冰点降低的主要原因.采用分子动力学模拟对DMSO-水混合物体系进行的模拟进一步证明了结论的可靠性.  相似文献   

4.
采用一步法合成了一系列侧链含偶氮三嗪发色团的新型含氟聚酰亚胺FPI(x),并研究其溶解性能、热性能以及光学性能.该系列聚酰亚胺具有优良的溶解性能,不仅溶于NMP,DMAc,DMF,DMSO等强极性非质子性溶剂,而且还溶于THF和乙二醇单甲醚等低沸点溶剂.FPI(x)系列共聚聚酰亚胺具有较高的玻璃化转变温度(Tg,在544~562K之间),且与主链中染料发色团的含量无关.所有聚酰亚胺都表现出优良的高温稳定性,其5%热失重温度(T5)比Tg高出100K以上,基本能满足电场极化对聚合物材料热稳定性的要求.另外,FPI(x)系列聚酰亚胺的紫外截止吸收波长小于500nm,即在大于500nm波长范围内基本透明.其面内折光指数nTE随着染料发色团含量的增加而逐渐增加.  相似文献   

5.
将4,4'-二氨基三苯甲烷(DTM)单体与均苯四甲酸酐(PMDA)进行缩聚反应,再与对-硝基苯基重氮氟硼酸盐进行重氮偶合反应,然后经酰亚胺化合成了侧链含偶氮苯发色团的聚酰亚胺非线性光学材料(NLOPI).通过红外光谱对产物进行了结构表征.对产物的紫外-可见吸收光谱研究发现,在330和490nm处出现侧链偶氮苯发色团的特征吸收.通过简并四波混频方法(DFWM)测定侧链含偶氮苯发色团的聚酰亚胺薄膜的三阶非线性极化率χ(3)=4.58×10-18m2/W.在DFWM中,前向泵浦光If和探测光Ip是主要的写入光,而后向泵浦光Ib是主要的读出光.证实了光致偶氮分子的顺反异构能够导致光信息存储的特性.  相似文献   

6.
Lipid-water interaction plays an important role in the properties of lipid bilayers, cryoprotectants, and membrane-associated peptides and proteins. The temperature at which water bound to lipid bilayers freezes is lower than that of free water. Here, we report a solid-state NMR investigation on the freezing point depression of water in phospholipid bilayers in the presence and absence of cholesterol. Deuterium NMR spectra at different temperatures ranging from -75 to + 10 degrees C were obtained from fully (2)H2O-hydrated POPC (1-palmitoyl-2-oleoylphosphatidylcholine) multilamellar vesicles (MLVs), prepared with and without cholesterol, to determine the freezing temperature of water and the effect of cholesterol on the freezing temperature of water in POPC bilayers. Our 2H NMR experiments reveal the motional behavior of unfrozen water molecules in POPC bilayers even at temperatures significantly below 0 degrees C and show that the presence of cholesterol further lowered the freezing temperature of water in POPC bilayers. These results suggest that in the presence of cholesterol the fluidity and dynamics of lipid bilayers can be retained even at very low temperatures as exist in the liquid crystalline phase of the lipid. Therefore, bilayer samples prepared with a cryoprotectant like cholesterol should enable the performance of multidimensional solid-state NMR experiments to investigate the structure, dynamics, and topology of membrane proteins at a very low temperature with enhanced sample stability and possibly a better sensitivity. Phosphorus-31 NMR data suggest that lipid bilayers can be aligned at low temperatures, while 15N NMR experiments demonstrate that such aligned samples can be used to enhance the signal-to-noise ratio of is 15N chemical shift spectra of a 37-residue human antimicrobial peptide, LL-37.  相似文献   

7.
偶氮苯衍生物自组装单分子膜中的分子取响   总被引:4,自引:0,他引:4  
利用反射红外光谱研究了金表面一系列具有不同碳链长度的偶氮苯巯基衍生物的自组装单分子膜.通过对比各向同性样品的透射谱和单分子膜的反射谱中各个吸收峰强度,定量地研究了分子中各部分的取向与分子结构的关系.我们分别提出了烷基链和偶氮基团取向计算的方法,利用该方法成功地求得了分子中各部分在膜的倾角.结果显示,当分子中烷基链长度增大时,碳链和偶氮苯基团相对于法线的倾斜逐渐加剧.这种倾角的变化归因于分子中碳链间范德华引力增大时,引起分子逐渐倾斜以达到最佳的范德华接触.同时研究发现,烷基链和偶氮基团受碳长度变化的影响并不相同.当分子中亚甲基数目增多时,烷基链的倾角迅速增大而偶氮苯倾角的增大则相对缓慢,这反映了它们在空间需求和本身刚性上的不同。  相似文献   

8.
This work demonstrates that the incorporation of azobenzene residues into the side chain of low‐molecular‐weight peptides can modulate their self‐assembly process in organic solvents leading to the formation of stimuli responsive physical organogels. The major driving forces for the gelation process are hydrogen bonding and π–π interactions, which can be triggered either by thermal or ultrasound external stimuli, affording materials having virtually the same properties. In addition, a predictive model for gelation of polar protic solvent was developed by using Kamlet–Taft solvent parameters and experimental data. The obtained viscoelastic materials exhibited interconnected multistimuli responsive behaviors including thermal‐, photo‐, chemo‐ and mechanical responses. All of them displayed thermoreversability with gel‐to‐sol transition temperatures established between 33–80 °C and gelation times from minutes to several hours. Structure–property relationship studies of a designed peptide library have demonstrated that the presence and position of the azobenzene residue can be operated as a versatile regulator to reduce the critical gelation concentration and enhance both the thermal stability and mechanical strength of the gels, as demonstrated by comparative dynamic rheology. The presence of N‐Boc protecting group in the peptides showed also a remarkable effect on the formation and properties of the gels. Despite numerous examples of peptide‐based gelators known in the literature, this is the first time in which low‐molecular‐weight peptides bearing side chain azobenzene units are used for the synthesis of “intelligent” supramolecular organogels. Compared with other approaches, this strategy is advantageous in terms of structural flexibility since it is compatible with a free, unprotected amino terminus and allows placement of the chromophore at any position of the peptide sequence.  相似文献   

9.
Some molecules with a molecular skeleton similar to that of stilbenes and azobenzenes show orientational disorder in the crystals. If the disorder is dynamic, a conformational interconversion takes place through a pedal motion. In this study X-ray diffraction analyses of (E)-stilbene (1) and azobenzene (2) were carried out at various temperatures. We succeeded in observing thermodynamic nonequilibrium states that were generated by fast freezing of the conformational interconversion at low temperatures. The populations of the two conformers in crystals of 1 at 90 K varied with the cooling rate. Flash cooling of a crystal of 2 from room temperature to 90 K made it possible to observe the minor unstable conformer that does not exist in the equilibrium state at the same temperature.  相似文献   

10.
Insufficient ionic conductivity and freezing of the electrolyte are considered the main problems for electrochemical energy storage at low temperatures (low T). Here, an electrolyte with a freezing point lower than ?130 °C is developed by using dimethyl sulfoxide (DMSO) as an additive with molar fraction of 0.3 to an aqueous solution of 2 m NaClO4 (2M‐0.3 electrolyte). The 2M‐0.3 electrolyte exhibits sufficient ionic conductivity of 0.11 mS cm?1 at ?50 °C. The combination of spectroscopic investigations and molecular dynamics (MD) simulations reveal that hydrogen bonds are stably formed between DMSO and water molecules, facilitating the operation of the electrolyte at ultra‐low T. Using DMSO as the electrolyte additive, the aqueous rechargeable alkali‐ion batteries (AABs) can work well even at ?50 °C. This work provides a simple and effective strategy to develop low T AABs.  相似文献   

11.
侧链含分散红类染料基团的聚(氨酯-酰亚胺)的合成与表征   总被引:8,自引:1,他引:7  
采用两步法合成了4种侧链含偶氮染料发色团分散红-19的新型聚(氨酯-酰亚胺)(PUI):先合成含染料发色团的二异氰酸酯,再进一步和二酐单体缩合生成PUI.用红外光谱、紫外-可见光谱、DSC和TGA等手段对合成的PUI进行表征.所有PUI在~490nm处都有一强吸收峰.PUI可溶于强极性非质子溶剂,如NMP,DMAc,DMF,DMSO和1,4-丁内酯,有些甚至在常用的低沸点溶剂如THF中也可溶解.PUI的特性粘数在0.16~0.31dL/g范围内.其玻璃化转变温度(Tg)在171~211℃范围内,明显高于侧链型非线性光学聚氨酯(PU).以刚性相对较大的六氟异丙叉基二(3,4-邻苯二甲酸酐)(6FDA)和甲苯-2,4-二异氰酸酯(TDI)为单体的PUI具有比以二苯醚-3,3′,4,4′-四甲酸二酐(OPDA)和4,4′-二异氰酸酯二苯甲烷(MDI)为单体的PUI更高的Tg.PUI的TGA曲线上有两个明显的失重台阶,起始热分解温度大约在300℃左右.  相似文献   

12.
DMSO-water mixtures exhibit a marked freezing point depression, reaching close to 60 K at n(DMSO) = 0.33. The phase diagram indicates that stable DMSO-water clusters may be responsible for this phenomenon. Using time-independent quantum chemical methods, we investigate possible candidates for stable supermolecules at mole fractions n(DMSO) = 0.25 and 0.33. The model clusters are built by adding various numbers of water molecules to a single DMSO molecule. Structures and interaction energetics are discussed in the light of experimental and theoretical results from the literature. A comparison with results from molecular dynamics simulations is of particular interest. Our optimized structures are spatially very different from those previously identified through MD simulations. To identify the structural patterns characterizing the clusters, we classify them on the basis of hydrogen-acceptor interactions. These are well separated on an interaction energy scale. For the hydrophobic interactions of the methyl groups with water, attractive interactions of up to 8 kJ/mol are found. In forming clusters corresponding to a range of different mole fractions, up to four water molecules are added to each DMSO molecule. This corresponds to a rough local model of solvation. Examination of the trends in the interactions indicates that the methyl-water interaction becomes more important upon solvation. Finally, we investigate how the clusters interact and attempt to explain which role is played by the various structures and their intercluster interaction modes in the freezing behavior of DMSO-water.  相似文献   

13.
Ultraviolet photodissociation of peptides followed by mass analysis has several desirable advantages relative to other methods, yet it has not found widespread use due to several limitations. One shortcoming is the inefficiency with which peptides absorb in the ultraviolet. This issue has a simple solution and can be circumvented by the attachment of noncovalent adducts that contain appropriate chromophores. Subsequent photoactivation of the chromophore leads to vibrational excitation of the complex and eventually to fragmentation of the peptide. Herein, the energetics that control the efficiency of this process are examined as a function of the characteristics of both the peptide and the noncovalently attached chromophore. Fragmentation efficiency decreases with increasing peptide size and is also constrained by the binding energy of the noncovalent adduct. The optimum chromophore should have excellent absorption at the excitation wavelength and a low luminescence quantum yield. It is demonstrated that a naphthyl based 18-crown-6 adduct is ideally suited for attaching to a variety peptides and fragmenting them following absorption of 266 nm light. Potential applications and limitations of this methodology are discussed.  相似文献   

14.
The radiation induced free radical damage in Chinese hamster lung fibroblast V-79 cells stored in DMEM culture medium containing 10% DMSO has been investigated by matrix EPR spectroscopy in connection with the H2O/DMSO binary phase diagram. A major part of the indirect effect is due to radicals from the DMSO·3H2O phase in the freezing medium, which are released on warming in the temperature range between 130 K and 160 K, that is, far below the eutectic melting temperature (210 K). The radicals trapped in the DMSO·3H2O phase react with oxygen above 160 K giving reactive oxygen species (ROS) of the type of peroxyl radicals. A lower limit yield of 10–15% was calculated for this conversion. Scavenging experiments with a stable nitroxyl radical (tempol) have demonstrated that part of the DMSO·3H2O radicals escape by mutual recombination on melting and are therefore available for inducing indirect cell damage. The same experiments performed with pure frozen water have shown that OH radicals are not available for inducing cell damage. The EPR measurements performed on H2O/DMSO frozen mixtures suggest that the radiation induced radical forming process does not change when passing to the low dose range below 1 Gy, in agreement with the linear model.  相似文献   

15.
A single linearly polarized irradiation was used to initiate cationic photopolymerization of an azobenzene-containing diepoxide monomer dissolved in a ferroelectric liquid crystal (FLC) and, at the same time, to induce fast trans-cis-trans photoisomerization cycles for the azobenzene chromophore which leads to a bulk alignment of the FLC in the absence of surface orientation layers. The spectral output of the light source is required to have separate UV and visible wavelengths, which allow for simultaneous photopolymerization of the monomer and photoalignment of the chromophore. Photopolymerization was allowed to take place in different phases of the FLC to reveal the effects on the FLC photoalignment; the interaction between the anisotropic azobenzene polymer network and the FLC host was also investigated using polarizing UV-Vis spectroscopy.  相似文献   

16.
A novel octupolar chromophore with 1,3,5-triazine as core,2,7-divinylene-9,9-dimethylfluorene as extendedπ-conjugated bridge,triarylamine as the electron-donating end-groups was successfully synthesized and characterized.Their linear photophysical and two-photon absorption(TPA) properties were investigated by UV absorption,excited fluorescence(SPEF) spectra and nonlinear transmission method,respectively.The absorption cut-off of the chromophore is below 520 nm and it has stronger fluorescence emission in a nonpolar solvent.In addition,the chromophore exhibits larger TPA cross-section(226.0 GM) in the femtosecond regime at 800 nm.  相似文献   

17.
A photoresponsive integrin ligand was synthesized by backbone-cyclization of a heptapeptide containing the integrin binding motif Arg-Gly-Asp (RGD) with 4-(aminomethyl)phenylazobenzoic acid (AMPB). Surface plasmon enhanced fluorescence spectroscopy showed that binding of the azobenzene peptide to alpha(v)beta(3) integrin depends on the photoisomeric state of the peptide chromophore. The higher affinity of the trans isomer could be rationalized by comparing the NMR conformations of the cis and trans isomers with the recently solved X-ray structure of a cyclic RGD-pentapeptide bound to integrin.  相似文献   

18.
"A-B" type photosensitive compounds including two-photon chromophore and benzophenone moiety have been designed, synthesized and characterized. The UV-vis absorption and fluorescence emission of the compounds have been extensively studied in various solvents. The results show that the absorption of "A-B" type compounds displays obvious double absorption bands, one of which at short-wavelength is related to the benzophenone moiety, the other at long-wavelength is mainly contributed by chromophore. The emission of "A-B" type compounds at 500-700nm shows an "unexpected" blue-shift comparing with that of the sole chromophore. The photosensitive compounds with amino group display strong emission in apolar solvents and have a low fluorescence quantum yields in polar solvents. In contrast, the compounds without amino group exhibit strong fluorescence emission in polar solvents, and low fluorescence quantum yields in apolar solvents. The fluorescence quantum yields of "A-B" type compounds are higher than those of the sole chromophore. The discoveries suggest that charge redistribution induced by the introduction of benzophenone moiety plays a key role on the absorption and emission spectroscopy.  相似文献   

19.
Abstract —Fourier transform infrared (FTIR) difference spectra of the BR→rK transition in bacteriorhodopsin at 77→K are compared with analogous resonance Raman difference spectra obtained using a spinning sample cell at 77→K. The vibrational frequencies observed in the FTIR spectra of native purple membrane and of purple membrane regenerated with 15-deuterioretinal are in good agreement with the frequencies observed in the Raman spectra, indicating that the lines in the FTIR difference spectra arise predominantly from retinal chromophore vibrations. This agreement confirms that the spinning cell method for obtaining resonance Raman spectra of K minimizes potential contributions from unwanted photoproducts. The unexpected similarity between the resonance Raman scattering intensities and the FTIR absorption intensities for BR and K is discussed in terms of the delocalized electronic structure of the chromophore. Finally, comparison of the Schiff base regions of the K Raman and FTIR spectra provide additional information on the assignment of its Schiff base vibration.  相似文献   

20.
Organic/inorganic hybrid multilayer films with noncentrosymmetrically orientated azobenzene chromophores were fabricated by the sequential deposition of ZrO2 layers by a surface sol-gel process and subsequent layer-by-layer (LbL) adsorption of the nonlinear optical (NLO)-active azobenzene-containing polyanion PAC-azoBNS and poly(diallyldimethylammonium chloride) (PDDA). Noncentrosymmetric orientation of the NLO-active azobenzene chromophores was achieved because of the strong repulsion between the negatively charged ZrO(2) and the sulfonate groups of the azobenzene chromophore in PAC-azoBNS. Regular deposition of ZrO(2)/PAC-azoBNS/PDDA multilayer films was verified by UV-vis absorption spectroscopy and quartz crystal microbalance measurements. Both UV-vis absorption spectroscopy and transmission second harmonic generation (SHG) measurements confirmed the noncentrosymmetric orientation of the azobenzene chromophores in the as-prepared ZrO2/PAC-azoBNS/PDDA multilayer films. The square root of the SHG signal (I(2omega)(1/2)) increases with the increase of the azobenzene graft ratio in PAC-azoBNS as the number of deposition cycles of the ZrO(2)/PAC-azoBNS/PDDA films remains the same, while the second-order susceptibility chi(zzz)(2) of the film decreases with the increase of the azobenzene graft ratio. Furthermore, the present method was successfully extended to realize the noncentrosymmetric orientation of azobenzene chromophores in multilayer films when small organic azobenzene compounds with carboxylic acid and/or hydroxyl groups at one end and sulfonate groups at the other end were used. The present method was characterized by its simplicity and flexibility in film preparation, and it is anticipated to be a facile way to fabricate second-order nonlinear optical film materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号