首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
In this issue of Chemistry & Biology, Weiss and colleagues use phage display to map residues in the engrailed homeodomain that influence DNA recognition. Their shotgun scanning data provides surprising new insights into the importance of regions outside the recognition helix and N-terminal arm for DNA binding.  相似文献   

4.
Protein kinase transduction pathways are thought to be involved in light signaling in plants, but other than the photoreceptors, no protein kinase activity has been shown to be light-regulated in vivo. Using an in-gel protein kinase assay technique with histone H III SS as an exogenous substrate, we identified a light-regulated protein kinase activity with an apparent molecular weight ca 50 kDa. The kinase activity increased transiently after irradiation of dark-grown seedlings with continuous far red light (FR) and blue light (B) and decreased after irradiation with red light (R). The maximal activation was achieved after 30 min to 1 h with FR or B. After irradiation times longer than 2 h, the kinase activity decreased to below the sensitivity level of the assay. In Arabidopsis mutants lacking either the photoreceptors phytochrome A, phytochrome B or the blue-light receptor cryptochrome 1, kinase activity was undetectable, whereas in the photomorphogenic mutants cop1 and det1 the kinase activity was also observed in the absence of light signals, though still stimulated by B and FR. Interestingly, the R inhibition of the kinase activity was lost in the mutant hy5. Pretreatment with cycloheximide blocked the kinase activity.  相似文献   

5.
We report an antibody that selectively recognizes MPK38, a new protein serine/threonine kinase closely related to the SNF1 serine/threonine kinase family. This antibody recognized a region of the N-terminal kinase catalytic domain and part of the remaining C-terminal portion and was sensitive enough to detect a 72-kDa recombinant MPK38 in insect cells by Western blotting. Immunoblot analysis showed that the recombinant MPK38 was expressed in a time-dependent manner and reached a maximum after 48 h postinfection. In addition, the immune complex kinase assay revealed that the recombinant and endogenous MPK38 protein autophosphorylated in vitro. Phosphoamino acid analysis of autophosphorylated MPK38 protein showed that the phosphorylation was exclusively on serine and threonine residues, suggesting that MPK38 is a protein serine/threonine kinase. Thus, this antibody could be helpful for elucidating the biological functions of MPK38 in the MPK38-expressing cells.  相似文献   

6.
Here, we report that the approach of metal-templated ligand synthesis can be applied to construct a dimeric protein assembly ((BMOE)RIDC1(2)), which is stabilized by noncovalent interactions and flexible covalent cross-linkers around the Zn templates. Despite its flexibility, (BMOE)RIDC1(2) selectively binds Zn(II) over other divalent metals and undergoes dimerization upon metal binding. Such simultaneous fulfillment of plasticity and selectivity is a hallmark of cellular signaling events that involve ligand/metal-induced protein dimerization.  相似文献   

7.
The synthesis from l-quebrachitol of a series of 3-deoxygenated ether lipid-type phosphatidylinositol (PI) analogues is reported, that selectively block activation of Akt and downstream substrates without affecting activation of the upstream kinase, PDK-1, or other kinases downstream of ras such as MAPK in H157 and H1703 lung cancer cells that have high levels of constitutively active Akt. The 2-hydroxyl in these compounds was deleted or alkylated with the intent to preclude metabolic degradation of these compounds by PI-specific phospholipase C (PI-PLC). PI analogues with phosphate linkers are more effective than those with carbonate linkers. Specific inhibition of Akt by these compounds validates ligand design targeted to the PH domains of crucial signaling proteins, thus providing a unique class of possible cancer therapeutics.  相似文献   

8.
The vibrational spectral studies of the semi-organic material l- arginine acetate (LAA) are carried out with the help of density functional calculations to derive the equilibrium geometry as well as the vibrational wavenumbers and intensities of the spectral bands. The vibrational spectrum assignments are performed using normal coordinate analysis (NCA) in accordance with the scaled quantum mechanical force field approach (SQMFF). Vibrational spectra confirm the COO- modes split due to intra- and intermolecular association based on C–O….H, N–H….O, and O–H?O hydrogen bonding in the molecule, which lowers carboxylate wavenumbers. The natural bond orbital (NBO) analysis and DFT computations also confirm the occurrence of strong intra and intermolecular N–H?O and O–H?O ionic hydrogen bonding between charged species, providing the non-centrosymmetric structure in the LAA crystal.  相似文献   

9.
10.
The Saccharomyces cerevisae nitrogen permease reactivator Npr1 is a hyperphosphorylated protein that belongs to a fungus-specific family of Ser/Thr protein kinases dedicated to the regulation of plasma membrane transporters. Its activity is regulated by the TOR (target of rapamycin) signalling pathway. Inhibition of the TOR proteins by treating yeast cells with the immunosuppressant drug rapamycin promotes rapid dephosphorylation of Npr1. To identify the rapamycin-sensitive phosphorylation sites in yeast Npr1, glutathione-S-transferase (GST)-tagged Npr1 was isolated from untreated or rapamycin-treated cells, and analyzed by mass spectrometry. Here, we report for the first time 22 phosphorylation sites that are clustered in two regions of the N-terminal serine-rich domain. All phosphorylation sites, except two, were found to be rapamycin-sensitive. Some phosphorylation sites are contained in motifs that closely resemble those in mammalian S6K (serines followed by a tyrosine or a phenylalanine) and 4E-BP1 (serines followed by a proline). Other sites, such as serines followed by Ala, Asn, Gln, His, Ile, Leu, or Val, appear to define new motifs. Thus, TOR controls an unusually broad array of phosphorylation sites in Npr1. In addition to phosphorylation by upstream kinases, Npr1 undergoes autophosphorylation that was mapped to three distinct serines in the N-terminal domain of which Ser257 appears to be the main autophosphorylation site. Site-directed mutagenesis confirmed the mass spectral assignments of the autophosphorylation sites and shows that Ser257 is specifically involved in forming an in vitro substrate-binding site.  相似文献   

11.
Using subcellular fractionation and Western blot methods, we have shown that AcsD, one of the proteins encoded by the Acetobacter cellulose synthase (acs) operon, is localized in the periplasmic region of the cell. AcsD protein was heterologously expressed in Escherichia coli and purified using histidine tag affinity methods. The purified protein was used to obtain rabbit polyclonal antibodies. The purity of the subcellular fractions was assessed by marker enzyme assays.  相似文献   

12.

Background  

Two-component systems consisting of histidine kinases and their corresponding receivers are widespread in bacterial signal transduction. In the past few years, genes coding for homologues of two-component systems were also discovered in eukaryotic organisms. DokA, a homologue of bacterial histidine kinases, is an element of the osmoregulatory pathway in the amoeba Dictyostelium. The work described here addresses the question whether DokA is phosphorylated in vivo in response to osmotic stress.  相似文献   

13.
Checkpoint kinase 1 (Chk1) and Chk2 are effector kinases in the cellular DNA damage response and impairment of their function is closely related to tumorigenesis. Previous studies revealed several substrate proteins of Chk1 and Chk2, but identification of additional targets is still important in order to understand their tumor suppressor functions. In this study, we screened novel substrates for Chk1 and Chk2 using substrate target motifs determined previously by an oriented peptide library approach. The potential candidates were selected by genome-wide peptide database searches and were examined by in vitro kinase assays. ST5, HDAC5, PGC-1alpha, PP2A PR130, FANCG, GATA3, cyclin G, Rad51D and MAD1a were newly identified as in vitro substrates for Chk1 and/or Chk2. Among these, HDAC5 and PGC-1a were further analyzed to substantiate the screening results. Immunoprecipitation kinase assay of full-length proteins and site-directed mutagenesis analysis of the target motifs demonstrated that HDAC5 and PGC-1alpha were specific targets for Chk1 and/or Chk2 at least in vitro.  相似文献   

14.
Box C/D small nucleolar RNAs (snoRNAs) direct site-specific methylation of ribose 2'-hydroxyls in ribosomal and spliceosomal RNAs. To identify snoRNA functional groups contributing to assembly of an active box C/D snoRNP in Xenopus oocytes, we developed an in vivo nucleotide analog interference mapping procedure. Deleterious substitutions consistent with requirements for binding the 15.5 kD protein clustered within the terminal box C/D motif only. In vitro analyses confirmed a single interaction site for recombinant 15.5 kD protein and identified the exocyclic amine of A89 in box D as essential for binding. Our results argue that the 15.5 kD protein interacts asymmetrically with the two sets of conserved box C/D elements and that its binding is primarily responsible for the stability of box C/D snoRNAs in vivo.  相似文献   

15.

Recognition of the methylated regions of the DNA plays an important role in the epigenetic processes. We analyze the interactions between the methylated DNA and the methyl-CpG-binding proteins using two models. The first model was built from a methylated or non-methylated cytosine, a guanine and an arginine residue in the experimental arrangement. We applied the M06L density functional method with a small, polarized double-ζ basis set for the geometry optimizations, and the MP2 method with polarized triple-ζ basis set for the energy calculations. The second model was built from two methylcytosines, guanines, guanidinium groups plus an additional carboxyl group in the experimental arrangement. We applied the B3LYP method with a small, polarized double-ζ basis set for the geometry optimizations and thermal corrections. The single-point energies were obtained from dual-hybrid dRPA75 and dRPA@PBE0 calculations supplemented by a moderately large polarized triple-ζ basis set. The hydration effects were modeled by adding explicit water molecules. These calculations revealed that the hydrophobic interaction has the largest contribution to the Gibbs interaction energy and turns the arginine side chains into hydrogen bonding position. Our results show that the translation of the protein along the DNA double helix is sterically hindered by the contact of its arginine side chains with the methyl groups of the methyl cytosines. This supports a hopping mechanism for the searching movement of the protein along the DNA.

  相似文献   

16.
[reaction: see text] Molecular modeling was used to design mimetics of the HIV-1 matrix protein nuclear localization signal (NLS) in which a scaffold of two resorcinol units joined by a diamide linker presents 3-aminopropyl ethers in place of lysine side chains. Prospective mimetics with linkers of 6, 8, 10, or 12 atoms were synthesized and compared in a competition assay for binding to the nuclear import receptor subunit karyopherin alpha, showing the 10-atom linker to be best and shorter ones ineffective.  相似文献   

17.
18.
Protein kinase CK2 is a multifunctional kinase of medical importance that is dysregulated in many cancers. In this study, polyoxometalates were identified as original CK2 inhibitors. [P2Mo18O62](6-) has the most potent activity. It inhibits the kinase in the nanomolar range by targeting key structural elements located outside the ATP- and peptide substrate-binding sites. Several polyoxometalate derivatives exhibit strong inhibitory efficiency, with IC50 values < or = 10 nM. Furthermore, these inorganic compounds show a striking specificity for CK2 when tested in a panel of 29 kinases. Therefore, polyoxometalates are effective CK2 inhibitors in terms of both efficiency and selectivity and represent nonclassical kinase inhibitors that interact with CK2 in a unique way. This binding mode may provide an exploitable mechanism for developing potent drugs with desirable properties, such as enhanced selectivity relative to ATP-mimetic inhibitors.  相似文献   

19.
20.
We report a novel method to identify protein kinase C (PKC) substrates. Tissue lysates were fractionated by ion exchange chromatography and used as substrates in in vitro kinase reactions. The phosphorylated proteins were separated using two-dimensional gel electrophoresis. Spots that contained isolated phosphoproteins were excised and digested with trypsin. The tryptic peptides were analyzed using mass spectrometry. While several of the proteins identified using this technique represent known PKC substrates, we identified a new PKC substrate in the initial screen. This protein, sm22, is expressed in smooth muscle cells and served well as a substrate for PKC in vitro. Sm22 is predominantly associated with the actin cytoskeleton. Upon activation of PKC in vivo, sm22 dissociates from the actin cytoskeleton and is distributed diffusely in the cytoplasm. Our data strongly suggest that phosphorylation by PKC controls the intracellular localization of sm22. This demonstrates that our approach, using a complex mixture of proteins as in vitro kinase substrates and subsequently identifying the newly phosphorylated proteins by mass spectrometry, is a powerful method to identify new kinase substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号