首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The solvent effects on ketyl radicals of benzophenone derivatives (BPD) in the excited state (BPDH*(D1)) were investigated. Absorption and fluorescence spectra of BPDH*(D1) in various solvents were measured using nanosecond-picosecond two-color two-laser flash photolysis. The fluorescence peaks from BPDH*(D1) showed a shift due to the dipole-dipole interaction with the solvent molecules. The dipole moments (mu(e)) of BPDH*(D1) were estimated to be 7-10 D, indicating that BPDH*(D1) are highly polarized. It was revealed that the fluorescence lifetime (tau(f)) depends on mu(e) in acetonitrile because the stabilization by solvent molecules affects the tau(f) value in polar solvents, predominantly. On the contrary, the conformation of BPDH*(D1) plays an important role in cyclohexane because the efficiency of the unimolecular reaction from BPDH*(D1) depends on the conformation. The substituent effect on the electron transfer from BPDH*(D1) to their parent molecules was also discussed.  相似文献   

2.
On irradiation in hexane (248- and 308-nm laser light) 4-diphenyl(trimethylsilyl)methyl-N,N-dimethylaniline, 2, undergoes photodissociation of the C-Si bond giving 4-N,N-dimethylamino-triphenylmethyl radical, 3(*) (lambda(max) at 343 and 403 nm), in very high quantum yield (Phi = 0.92). The intervention of the triplet state of 2 (lambda(max) at 515 nm) is clearly demonstrated through quenching experiments with 2,3-dimethylbuta-1,3-diene, styrene, and methyl methacrylate using nanosecond laser flash photolysis (LFP). The formation of 3(*) is further demonstrated using EPR spectroscopy. The detection of the S(1) state of 2 was achieved using 266-nm picosecond LFP, and its lifetime was found to be 1400 ps, in agreement with the fluorescence lifetime (tau(f) = 1500 ps, Phi(f) = 0.085). The S(1) state is converted almost exclusively to the T(1) state (Phi(T) = 0.92). In polar solvents such as MeCN, 2 undergoes (1) photoionization to its radical cation 2(*)(+), and (2) photodissociation of the C-Si bond, giving radical 3(*) as before in hexane. The formation of 2(*)(+) occurs through a two-photon process. Radical cation 2(*)(+) does not fragment further, as would be expected, to 3(*) via a nucleophile(MeCN)-assisted C-Si bond cleavage but regenerates the parent compound 2. Obviously, the bulkiness of the triphenylmethyl group prevents interaction of 2(*)(+) with the solvent (MeCN) and transfer to it of the electrofugal group Me(3)Si(+). The above results of the laser flash photolysis are supported by pulse radiolysis, fluorescence measurements, and product analysis.  相似文献   

3.
Nonradiative deactivation processes of excited aniline and its derivatives in aqueous solution were investigated by steady-state and time-resolved fluorescence measurements to reveal characteristic solvent effects of water on the relaxation processes of excited organic molecules. The magnitude of nonradiative rate (knr) of excited aniline derivatives increased significantly in water compared to that in organic solvents (cyclohexane, ethanol, and acetonitrile). The fluorescence lifetime measurements in organic solvent/H2O mixed solvents suggested that the fluorescence quenching in water was not due to exciplex formation but due to interactions with a water cluster. From temperature effect experiments on the fluorescence lifetime and quantum yield of aniline, N-methylaniline, and N,N-dimethylaniline, the apparent activation energies for the nonradiative deactivation rate in water were determined as 21, 30, and 41 kJ mol-1, respectively. Upon substitution of hydrogen atoms in the aromatic ring of aniline derivatives for deuterium atoms resulted in normal deuterium isotope effect in cyclohexane, i.e. knr decreased by deuterium substitution, while in water the same deuterium substitution led to an increase in knr (the inverse isotope effect). The inverse isotope effects implied that a direct internal conversion to vibrationally higher excited states in the electronically ground state is not a dominant mechanism but the transition to a close-lying energy level, e.g. the relaxation to charge transfer to solvent (ctts) state, would be associated with the quenching mechanism in water.  相似文献   

4.
The 308 nm photoinduced formation of the nitroso product and the intermediacy of the aci-nitro form(s) were studied for a series of 2-nitrobenzyl alkyl and aryl esters (1a-4e) and bis-(nitrophenyl)methyl acetates (5a-6b) by time-resolved UV-vis spectroscopy. A triplet state appears as major transient, when 2-nitrobenzyl derivatives 1 are substituted by 4,5-dimethoxy (2) and 4,5-methylenedioxy (3/4) groups. This triplet of charge transfer character is, however, not part of the route via the aci-nitro into the 2-nitroso form. The activation energy and preexponential factor of the longest lifetime component (tau(aci)), i.e. the major part of the aci-nitro decay, were determined. The carboxylic acids as leaving groups have rather small effects on tau(aci). An additional nitrated phenyl ring in alpha-position (5) leads generally to shorter tau(aci) value. Otherwise, the photogeneration of nitroso products is similar. The quantum yield (Phi(d)) varies only moderately with structure, the yield of the aci-nitro form and Phi(d) are correlated and little affected by solvent properties.  相似文献   

5.
The results of a comprehensive investigation of the photophysical properties of the sunscreen analogue, N-acetyl menthyl anthranilate (NAMA), in various solvent systems are reported. Luminescence studies reveal that this compound is fluorescent (Phi(f)=0.16+/-0.01) in toluene and has a solvent dependent emission maximum in the range 363-370 nm. Phosphorescence has also been detected in low temperature glasses with an emission maximum at 420 nm in EPA, and a lifetime of 1.3 s; the triplet energy was found to be 311+/-3 kJ mol(-1). Kinetic UV-visible absorption measurements revealed a transient species with absorption maxima at 450 nm and solvent dependent lifetimes of 120-240 micros which are attributed to the triplet state. The triplet state is efficiently quenched by oxygen, leading to the formation of singlet oxygen in all of the solvent systems studied. The singlet oxygen quantum yields (Phi(Delta)), determined by time-resolved near-infrared luminescence measurements, were in the range 0.19-0.21.  相似文献   

6.
A cofacially stacked perylenediimide (PDI) dimer with a xanthene linker was studied under a variety of conditions (solvent, temperature) and serves as a model for the molecular interactions occurring in solid films. Intrinsically, the PDI units have a fluorescence quantum yield (Phi F) close to unity, but Phi F is lowered by a factor of 6-50 at room temperature when two PDI moieties are held in a cofacial arrangement, while the decay time of the most emissive state is increased significantly (tau F = 27 ns in toluene) compared to a monomeric PDI molecule (tau F = 4 ns). Fluorescence measurements show a strong solvent and temperature dependence of the characteristics of the emissive excited state. In a glassy matrix of toluene (TOL) or 2-methyltetrahydrofuran (2-MeTHF), Phi F is high, and the decay time is long (tau F = approximately 50 ns). At higher temperature, both Phi F and tau F are reduced. Interestingly, at room temperature, Phi F and tau F are also reduced with increasing solvent polarity, revealing the presence of a polar transition state. Photoinduced absorption of the stacked molecules from the picosecond to the microsecond time scale shows that after photoexcitation reorganization occurs in the first nanoseconds, followed by intersystem crossing (ISC), producing the triplet excited state. Using singlet oxygen ( (1)Delta g) luminescence as a probe, a triplet quantum yield (Phi T) greater than 50% was obtained in air-saturated 2-Me-THF. Triplet formation is exceptional for PDI chromophores, and the enhanced ISC is explained by a decay involving a highly polar transition state.  相似文献   

7.
Single-molecule fluorescence photoswitching plays an essential role in ultrahigh-density (Tbits/inch(2)) optical memories and super-high-resolution fluorescence imaging. Although several fluorescent photochromic molecules and fluorescent proteins have been applied, so far, to optical memories and super-high-resolution imaging, their performance is unsatisfactory because of the absence of "non-destructive fluorescence readout capability". Here we report on a new molecular design principle of a molecule having non-destructive readout capability. The molecule is composed of acceptor photochromic diarylethene and donor fluorescent perylenebisimide units. The fluorescence is reversibly quenched when the diarylethene unit converts between the open- and the closed-ring isomers upon irradiation with visible and UV light. The fluorescence quenching is based on an electron transfer from the donor to the acceptor units. The fluorescence photoswitching and non-destructive readout capability were demonstrated in solution (an ensemble state) and at the single-molecule level. Femtosecond time-resolved transient and fluorescent lifetime measurements confirmed that the fluorescence quenching is attributed to the intramolecular electron transfer.  相似文献   

8.
The unusual fluorescence properties of 8-methoxy-4-methyl-2H-benzo[g]chromen-2-one (1) are described. The fluorophore 1 is almost nonfluorescent in aprotic solvent (e.g., fluorescence quantum yield Phi(f) < 0.0003 in n-hexane), whereas it strongly fluoresces at long wavelengths (>450 nm) in protic solvent (e.g., Phi(f) = 0.21 in methanol). The fluorophore 1 also shows good applicability in developing a new fluorogenic (fluorescent "off-on") sensor. [structure: see text]  相似文献   

9.
The electronic absorption and fluorescence spectra, quantum yields for fluorescence (Phi(f)) and trans --> cis photoisomerization (Phi(tc)), and fluorescence lifetimes of trans-4-(N-arylamino)-4'-cyanostilbenes (2H, 2Me, 2OM, 2CN, and 2Xy with aryl = phenyl, 4-methylphenyl, 4-methoxyphenyl, 4-cyanophenyl, and 2,5-dimethylphenyl, respectively), trans-4-(N-methyl-N-phenylamino)-4'-cyanostilbene (2MP), trans-4-(N,N-diphenylamino)-4'-cyanostilbene (2PP), trans-4-(N-methyl-N-phenylamino)-4'-nitrostilbene (3MP), and three ring-bridged analogues 2OMB, 2MPB, and 3MPB are reported. Whereas fluorescence and torsion of the central double bond account for the excited decay of the majority of these donor-acceptor substituted stilbenes in both nonpolar and polar solvents (i.e., Phi(f) + 2Phi(tc) approximately 1), exceptions are observed for 2OM, 3MP, and 3MPB in solvents more polar than THF and for 2Me and 2MP in acetonitrile as a result of the formation of a weakly fluorescent and isomerization-free twisted intramolecular charge transfer (TICT) state (i.e., Phi(f) + 2Phi(tc) < 1). The TICT state for 2OM, 2Me, and 2MP results from the torsion of the stilbenyl-anilino C-N single bond, but the torsion of the styryl-anilino C-C bond is more likely to be responsible for the TICT state formation of 3MP and 3MPB. In conjunction with the behavior of aminostilbenes 1, a guideline based on the values of Phi(f) and Phi(tc) for judging the importance of a TICT state for trans-stilbenes is provided. Accordingly, the TICT state formation is unimportant for the excited decay of trans-4-(N,N-dimethylamino)-4'-cyanostilbene (DCS). In contrast, our results support the previously proposed TICT state for trans-4-(N,N-dimethylamino)-4'-nitrostilbene (DNS).  相似文献   

10.
Photolysis of the cryptand 1, bearing an intraannular azido substituent, results in a complex photochemistry. Low-temperature photolysis yields the triplet nitrene (3)2, which has been characterized by EPR spectroscopy. Small differences in ZFS parameters are detected between the uncomplexed nitrene-functionalized ligand (in EtOH: D' = 0.93 cm(-1)) and its sodium (NaBr@(3)2 in EtOH: D' = 0.88 cm(-1)) and potassium (KBr@(3)2 in MTHF: D' = 0.89 cm(-1)) complexes. If the photolysis of the free ligand is conducted at ambient temperature, a derivative of o-aminobenzaldehyde 4 is found to be the main product, which is formed by reaction of the o-iminoquinone methide 9 with water. The latter can be detected by UV/vis spectroscopy. Its lifetime is tau = 254 s in acetonitrile solution at ambient temperature. In the presence of diethylamine, the methyleneazepine derivative 5 is formed, which is indicative of didehydroazepine formation (7). Room-temperature photolysis of acetonitrile solutions of the sodium or potassium complexes also results in formation of the o-aminobenzaldehyde derivative. In the presence of diethylamine, however, no methyleneazepine 5 is found. Formation of the aniline derivative 8 instead points to free radical processes. Laser flash photolysis (LFP) of acetonitrile solutions of 1 leads to the detection of a short-lived (tau = 1.4 mus, lambda(max) = 445 nm plus weak absorption at lambda > 500 nm) intermediate A, which decays to transient B (tau = 8 ms, lambda(max) = 295 and ca. 350-400 nm). LFP of acetonitrile solutions of complexes NaBr@1 and KBr@1 gives similar transient spectra. In the presence of sodium and potassium cations, the lifetime of the short-lived transient A is reduced (Na(+): A', tau = 200 ns; K(+): A", tau = 160 ns). Transients A' and A" decay to long-lived transients B' + C' (B" + C"). Based on the results of our product studies, a comparison with the low-temperature results, and quantum mechanical calculations, the transients A, A', and A" are identified as singlet nitrenes (1)2, NaBr@(1)2, and KBr@(1)2, while the long-lived transients B, B', and B" are assigned to didehydroazepines 7, NaBr@7, and KBr@7. Transients C' and C" can be assigned to aminyl radicals NaBr@16 and KBr@16.  相似文献   

11.
The intramolecular charge transfer (ICT) reaction of 1-tert-butyl-6-cyano-1,2,3,4-tetrahydroquinoline (NTC6) in n-hexane and acetonitrile (MeCN) is investigated by picosecond fluorescence experiments as a function of temperature and by femtosecond transient absorption measurements at room temperature. NTC6 in n-hexane is dual fluorescent from a locally excited (LE) and an ICT state, with a quantum yield ratio Phi'(ICT)/Phi(LE) of 0.35 at +25 degrees C and 0.67 at -95 degrees C, whereas in MeCN mainly an ICT emission is observed. From the temperature dependence of Phi'(ICT)/Phi(LE) for NTC6 in n-hexane, an LE/ICT enthalpy difference DeltaH of -2.4 kJ/mol is determined. For comparison, 1-isopropyl-6-cyano-1,2,3,4-tetrahydroquinoline (NIC6) is also investigated. This molecule does not undergo an ICT reaction, because of its larger energy gap DeltaE(S1,S2). From the molar absorption coefficient epsilonmax of NTC6 as compared with other aminobenzonitriles, a ground-state amino twist angle theta of approximately 22 degrees is deduced. The increase of epsilonmax between n-hexane and MeCN indicates that theta decreases when the solvent polarity becomes larger. Whereas single-exponential LE fluorescence decays are obtained for NIC6 in n-hexane and MeCN, the LE and ICT decays of NTC6 in these solvents are double exponential. For NTC6 in n-hexane at -95 degrees C, with a shortest decay time of 20 ps, the forward (ka=2.5x10(10) s(-1)) and backward (kd=2.7x10(10) s(-1)) rate constants for the LE<-->ICT reaction are determined from the time-resolved LE and ICT fluorescence spectra. For NTC6 in n-hexane and MeCN, the excited-state absorption (ESA) spectrum at 200 fs after excitation is similar to the LE(ESA) spectra of NIC6 and 4-(dimethylamino)benzonitrile (DMABN), showing that LE is the initially excited state for NTC6. These results indicate that the LE states of NTC6, NIC6, and DMABN have a comparable molecular structure. The ICT(ESA) spectrum of NTC6 in n-hexane and MeCN resembles that of DMABN in MeCN, likewise indicating a similar ICT structure for NTC6 and DMABN. From the decay of the LE absorption and the corresponding growing-in for the ICT state of NTC6, it is concluded that the ICT state originates from the LE precursor and is not formed by direct excitation from S0, nor via an S2/ICT conical intersection. The same conclusion was made from the time-resolved (picosecond) fluorescence spectra, where there is no ICT emission at time zero. The decay of the LE(ESA) band of NTC6 in n-hexane occurs with a shortest time tau2 of 2.2 ps. The ICT reaction is much faster (tau2 = 0.82 ps) in the strongly polar MeCN. The absence of excitation wavelength dependence (290 and 266 nm) for the ESA spectra in MeCN also shows that LE is the ICT precursor. With NIC6 in n-hexane and MeCN, a decay or growing-in of the femtosecond ESA spectra is not observed, in line with the absence of an ICT reaction involving an S2/ICT conical intersection.  相似文献   

12.
The photophysical properties of indoline (I) and three of its derivatives, namely, N‐methylindoline (MI), 5‐cyanoindoline (CI), and 5‐cyano‐N‐methylindoline (CMI), are studied in H‐donating solvents of varying polarity. Based on measurements of fluorescence yield and lifetime, and of triplet yield and hydrated‐electron formation, two distinct mechanisms of solvent‐induced fluorescence quenching are evidenced. The first mechanism involves the cyano substituent and leads to an increase in the rate constant of internal conversion of one order of magnitude in ethanolic solution and of more than two orders of magnitude in water, as compared to solutions in n‐hexane or acetonitrile. A similar trend had previously been observed in the case of 4‐N,N‐dimethylaminobenzonitrile (DMABN). The second mechanism reduces the fluorescence lifetimes of the non‐cyanated derivatives in aqueous solution by one order of magnitude and is related to the formation of hydrated electrons. Neither of these mechanisms is influenced by methylation at the ring nitrogen. Quantum chemical calculations are performed on the ground and excited states of the hydrogen‐bonded complexes between protic solvents and MI as well as CMI. Stable hydrogen‐bonded configurations involving the CN substituent and a solvent OH group are found; these configurations are stable both in the ground and the first excited singlet states, whereas the corresponding complex at the ring amino nitrogen is stable in the ground state only. The CN? HO configuration is therefore a prime candidate for a mechanistic explanation of the observed quenching by the first mechanism. These findings may have useful applications for the design of fluorescence probes for water in biological systems.  相似文献   

13.
Novel bifunctional conjugates 1-3, with varying polymethylene spacer groups, were synthesized, and their DNA interactions have been investigated by various biophysical techniques. The absorption spectra of these systems showed bands in the regions of 300-375 and 375-475 nm, corresponding to acridine and acridinium chromophores, respectively. When compared to 1 (Phi(f) = 0.25), bifunctional derivatives 2 and 3 exhibited quantitative fluorescence yields (Phi(f) = 0.91 and 0.98) and long lifetimes (tau = 38.9 and 33.2 ns). The significant quenching of fluorescence and lifetimes observed in the case of 1 is attributed to intramolecular electron transfer from the excited state of the acridine chromophore to the acridinium moiety. DNA-binding studies through spectroscopic investigations, viscosity, and thermal denaturation temperature measurements indicate that these systems interact with DNA preferentially through intercalation of the acridinium chromophore and exhibit significant DNA association constants (K(DNA) = 10(5)-10(7) M(-1)). Compound 1 exhibits chromophore-selective electron-transfer reactions and DNA binding, wherein only the acridinium moiety of 1 interacts with DNA, whereas optical properties of the acridine chromophore remain unperturbed. Among bifunctional derivatives 2 and 3, the former undergoes DNA mono-intercalation, whereas the latter exhibits bis-intercalation; however both of them interact through mono-intercalation at higher ionic strength. Results of these investigations demonstrate that these novel water-soluble systems, which exhibit quantitative fluorescence yields, chromophore-selective electron transfer, and DNA intercalation, can have potential use as probes in biological applications.  相似文献   

14.
The emission spectra of nucleic acids, pyrimidine and purine nucleotides, nucleosides and bases and a series of pyrimidine derivatives were obtained using UV light excitation in glasses (ethanol and 2:1 mixtures of ethylene glycol and water (EG-H2O); also partly in butyronitrile and 2-methyltetrahydrofuran) at 77 K. The quantum yields of fluorescence phi f and phosphorescence phi p of some 30 compounds are presented; for several substituted uracils they are reported for the first time. The values cover a range from phi f = 0.0002 and phi p = 0.001 for uracil in ethanol to phi f = 0.50 for guanosine in acidic ethanol and phi p = 0.095 for guanosine-5'-monophosphate in EG-H2O (pH 6-7). The phosphorescence lifetime tau p at 77 K ranges from about 0.3 s (uracil moiety) to 3 s (adenine moiety). The measured tau p, phi f and phi p values are compared with those available in the literature.  相似文献   

15.
To create highly fluorescent organic compounds in longer wavelength regions, and to gain physical chemistry insight into the photophysical characteristics, we investigated photophysical properties (Phi(f), lambda(em), tau, lambda(abs), epsilon, k(r), and k(d)) and their controlling factor dependence of the following pi-conjugated molecular rods consisting of p-phenyleneethynylene units modified by donor (OMe) and/or acceptor (CN): (1) side-donor modification systems (SD systems), (2) side-acceptor modification systems (SA systems), and (3) systems consisting of donor block and acceptor block (BL systems). As a result, very high Phi(f) values (>0.95) were obtained for BL systems. Bathochromic shifts of lambd(em) in the same pi conjugation length were largest for BL systems. Thus we succeeded in the creation of highly efficient light emitters in the longer wavelength region by block modification (e.g., Phi(f) = 0.97, lambda(em) = 464 nm for BL-9), contrary to expectation from energy gap law. Considerably intense solid emission (Phi(f) approximately 0.5) in the longer wavelength region (500-560 nm) was also found for BL systems, presumably because of molecular orientation that hinders the self-quenching of fluorescence in solids. From (1) a Lippert-Mataga plot, (2) density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations, and (3) the positive linear relationship between the optical transition energy (nu(em)) and the difference between the highest occupied molecular orbital of the donor and the lowest unoccupied molecular orbital of the acceptor (HOMO(D)-LUMO(A) difference), it is elucidated that the excited singlet (S1) state of BL systems has a high charge transfer nature. The number (n) of energetically equivalent dipolar structure (EEDS) units in the oligoarylene ethynylenes is shown to be a measure of the effective pi conjugation length in the S1 state. The S1 state planarity increases with n values of EEDS units and by the introduction of donor and/or acceptor groups. It is worth noting that the Phi(f) values increase linearly with the n values of EEDS units.  相似文献   

16.
Green fluorescent proteins bearing the Y66H mutation exhibit strongly blue-shifted fluorescence excitation and emission spectra. However, these blue fluorescent proteins (BFPs) have lower quantum yields of fluorescence (Phi(f) approximately 0.20), which is believed to stem from the increased conformational freedom of the smaller chromophore. We demonstrate that suppression of chromophore mobility by increasing hydrostatic pressure or by decreasing temperature can enhance the fluorescence quantum yield of these proteins without significantly affecting their absorption properties or the shape of the fluorescence spectra. Analysis of the fluorescence lifetimes in the picosecond and nanosecond regimes reveals that the enhancement of the fluorescence quantum yield is due to the inhibition of fast quenching processes. Temperature-dependent fluorescence measurements reveal two barriers ( approximately 19 and 3 kJ/mol, respectively) for the transition into nonfluorescing states. These steps are probably linked with dissociation of the hydrogen bond between the chromophore and His148 or an intervening water molecule and to the barrier for chromophore twisting in the excited state, respectively. The chromophore's hydrogen-bond equilibrium at room temperature is dominated by entropic effects, while below approximately 200 K the balance is enthalpy-driven.  相似文献   

17.
We have synthesised nine monomeric azaheterofullerene (AZA) derivatives, RC(59)N, with a wide variety of different side chains R and investigated their spectroscopic and photophysical properties in toluene and o-dichlorobenzene (ODCB). Measurements include their ground-state absorption spectra, molar absorption coefficient (epsilon(G)), fluorescence spectra, fluorescence quantum yields (Phi(F)), singlet-state lifetimes (tau(F)), triplet-state absorption spectra, triplet molar absorption coefficients (epsilon(T)), singlet oxygen (Phi(Delta)), and triplet state (Phi(T)) quantum yields. The replacement of a carbon by a nitrogen atom in the C(60) sphere strongly affects most of the spectroscopic and photophysical properties. The chemical nature of the R moiety has definite effects on these properties in contrast with minor effects on the chemical nature of the addends in [6,6]-ring bridged monoadduct methano[60]fullerene derivatives. These effects concern properties of the ground state, singlet excited state, and triplet states of our nine RC(59)N derivatives and in particular the values of photophysical parameters epsilon(G), epsilon(T), Phi(Delta), and Phi(T), which are significantly lower than those of analogous monoadduct [6,6]-ring bridged methano[60]fullerene derivatives.  相似文献   

18.
Fluorescent sensor molecules were synthesized by conjugation of iminodiacetamide derivatives with fluorescent moieties of different structures and their UV-visible and fluorescent properties were characterized in acetonitrile solvent. The fluorescent measurements revealed that the N-(2-naphthyl) and N-phenyl derivatives exhibit a distinct zinc ion-selectivity over alkali and alkaline earth metal ions, while N-(anthrylmethyl) and N-(3-methoxyphenyl) derivatives do not possess any ion-selectivities. In contrast to the fluorescent measurements, all ligands show Zn(2+) selectivity over Ca(2+) and Mg(2+) ions in plasticized PVC membranes using potentiometric signal transduction. This observation found for N-(anthrylmethyl) and N-(3-methoxyphenyl) derivatives can be ascribed to the more hindered interaction between the signalling group of the ionophore and the central metal ion in PVC membranes than in acetonitrile solution upon complexation. From the fluorescent measurements it can also be concluded that the ligands with metal ions form complexes mainly with 2:1 stoichiometry (L(2)M). On complex formation a considerable decrease in the fluorescent intensity was observed for all ligands except the N-(anthrylmethyl) derivative, where a 25 - 30 fold fluorescence enhancement was found, which is explained by the photoinduced electron transfer (PET) mechanism. All ionophores exhibited serious hydrogen ion interference, therefore complexation-induced spectral changes were measured in aprotic acetonitrile solution.  相似文献   

19.
9,10-Diphenylanthracene (DPA), a well-studied organic chromophore (Phi(fl) = 0.98) that exhibits electroluminescence, has been covalently bound through 2-(ethylthio)ethylamido linkers to the carboxylic acid groups of short, soluble single-walled carbon nanotubes (sSWNTs) of 1 microm average length, and the resulting DPA-functionalised sSWNT (DPA- sSWNT) macromolecular adducts (4.6 wt % DPA content) characterised by solution (1)H NMR, Raman and IR spectroscopy and thermogravimetric analysis. Comparison of the quenching of DPA fluorescence (steady-state and time-resolved) and of the transient optical spectra of sSWNTs and DPA-sSWNTs show that the covalent linkage boosts the interaction between the DPA and the sSWNT units. DPA-sSWNTs exhibit emission in the near-IR region from 1100-1400 nm with an enhanced quantum yield (Phi = 5.7x10(-3)) compared with sSWNTs (Phi = 3.9x10(-3)).  相似文献   

20.
A combined femtosecond Kerr gated time-resolved fluorescence (fs-KTRF) and picosecond Kerr gated time-resolved resonance Raman (ps-KTR(3)) study is reported for two p-hydroxyphenacyl (pHP) caged phototriggers, HPDP and HPA, in neat acetonitrile and water/acetonitrile (1:1 by volume) solvents. Fs-KTRF spectroscopy was employed to characterize the spectral properties and dynamics of the singlet excited states, and the ps-KTR(3) was used to monitor the formation and subsequent reaction of triplet state. These results provide important evidence for elucidation of the initial steps for the pHP deprotection mechanism. An improved fs-KTRF setup was developed to extend its detectable spectral range down to the 270 nm UV region while still covering the visible region up to 600 nm. This combined with the advantage of KTRF in directly monitoring the temporal evolution of the overall fluorescence profile enables the first time-resolved observation of dual fluorescence for pHP phototriggers upon 267 nm excitation. The two emitting components were assigned to originate from the (1)pipi (S(3)) and (1)npi (S(1)) states, respectively. This was based on the lifetime, the spectral location, and how these varied with the type of solvent. By correlating the dynamics of the singlet decay with the triplet formation, a direct (1)npi --> (3)pipi ISC mechanism was found for these compounds with the ISC rate estimated to be approximately 5 x 10(11) s(-)(1) in both solvent systems. These photophysical processes were found to be little affected by the kind of leaving group indicating the common local pHP chromophore is largely responsible for the fluorescence and relevant deactivation processes. The triplet lifetime was found to be approximately 420 and 2130 ps for HPDP and HPA, respectively, in the mixed solvent compared to 150 and 137 ns, respectively, in neat MeCN. The solvent and leaving group dependent quenching of the triplet is believed to be associated with the pHP deprotection photochemistry and indicates that the triplet is the reactive precursor for pHP photorelease reactions for the compounds examined in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号