首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
在车轮循环滚动接触载荷作用下,钢轨接触表面裂纹问题频发,严重威胁高速列车运行安全,开展钢轨表面三维滚动接触疲劳裂纹扩展分析意义重大.首先,考虑不同初始裂纹角度,建立钢轨轨头含初始裂纹的三维有限元模型,对钢轨表面施加循环滚动接触载荷,进行轮轨滚动接触计算;然后,基于相互作用积分法计算裂纹前缘的应力强度因子;最后,采用最大周向应力准则和Paris公式计算当前状态下裂纹扩展方向和扩展速率,进而更新下一时刻的裂纹形状和尺寸.通过对上述过程重复实现,从而预测钢轨表面三维裂纹的扩展路径.加载过程中裂纹前缘应力强度因子计算结果表明,随着初始裂纹角度增加,K的峰值逐渐减小,K的峰值逐渐增大,裂纹前缘各位置的等效应力强度因子逐渐减小;裂纹前缘节点的位置越靠近钢轨表面,等效应力强度因子越大.疲劳裂纹扩展计算结果表明,随着循环次数的增加,不同初始角度下的裂纹都发生了偏折,逐渐朝着钢轨深度方向扩展,且裂纹的初始角度越大,发生扩展时需要的循环次数越多.对比三种初始裂纹角度下裂纹长度随循环次数的演化曲线可以发现,初始裂纹角度越小,裂纹扩展速率越大.所开发的方法也适用...  相似文献   

2.
磨石强度直接关系到钢轨打磨车的持续作业能力和磨削效率,因此研究磨石强度对打磨行为及钢轨表面质量的影响,对于现场磨石的优选具有重要参考价值. 参照Vossloh磨石抗压强度,制备了三种不同抗压强度的磨石(GS-10,68.9 MPa;GS-12.5,95.2 MPa;GS-15,122 MPa)并开展相应的打磨试验和表征. 结果显示,GS-15相对GS-10打磨量降幅约80%,但磨削比增幅约88%,表明磨石强度增大,磨石耐磨性提高,但磨削能力下降. 磨石和钢轨表面形貌显示,磨石强度增大导致磨石自锐性变差,磨削机制逐渐从切削转变为耕犁. 打磨钢轨表面SEM、EDS、XPS分析结果表明磨粒的切削作用是导致磨削热产生的首要因素,且随着磨石强度的增大,钢轨表面烧伤程度降低,钢轨表面氧化产物中Fe2+含量上升而Fe3+含量下降. 钢轨剖面金相结果表明:磨石强度增大导致钢轨表面白层、塑性变形层厚度增加,使钢轨产生更严重的预疲劳. 因此,对钢轨打磨磨石强度的合理调控和选择,对于协调打磨效率和钢轨表面质量具有重要意义.   相似文献   

3.
高速与重载铁路的疲劳磨损对比研究   总被引:8,自引:6,他引:2  
滚动接触疲劳和磨损是铁路钢轨损伤的主要问题.研究根据赫兹接触理论在JD-1型轮轨模拟试验机上通过改变车速和轴重来模拟高速和重载铁路的滚动接触,并用光镜和扫描电镜研究磨损表面,分析高速和重载条件下钢轨的磨损与疲劳机理.结果表明:随车速增加,钢轨磨损量减小,但出现大量斜裂纹,接触疲劳加剧.而随着轴重增加,塑性变形明显,磨损量迅速增加,但由于部分刚萌生的微裂纹被磨去,疲劳损伤较为轻微.  相似文献   

4.
应用轮轨型面测量仪测量实际运用中的磨耗后机车车轮,基于标准与磨耗后机车车轮型面,建立轮轨接触三维有限元模型,计算分析不同横移量下的接触斑和等效应力. 搭建轮轨接触试验台,使用取自现场的车轮与钢轨试块进行试验,分析不同横移量下轮轨接触状态. 针对磨耗前后车轮与标准钢轨接触的有限元计算与试验进行对比分析. 结果表明:横移量对轮轨接触状态有着显著的影响,横移量过大会加速机车车轮的磨耗;与标准型面相比,磨耗后车轮型面与标准钢轨接触时的接触斑面积较大,最大等效应力较小;通过轮轨接触试验台所得接触斑形状和大小与仿真计算所得结果一致性较好,证明了有限元仿真计算的可靠性.   相似文献   

5.
为了分析列车通过钢轨焊接接头时产生的轮轨动态冲击力对钢轨焊接接头表面裂纹扩展特性的影响,首先采用车辆-轨道耦合动力学数值模型计算轮轨垂向力,并建立带表面裂纹的轮轨接触有限元模型;然后将轮轨垂向力结果加载到有限元模型中分析其对裂纹扩展特性的影响。结果表明:在轮轨动态相互作用下,钢轨焊接接头处表面斜裂纹的扩展以剪切模式为主导,裂纹应力强度因子 KI 和应力强度因子范围ΔKII 随着列车速度的增大而增大;裂纹长度和裂纹面摩擦系数对应力强度因子范围ΔKII 影响较大,当裂纹长度从3mm 增加到10mm 时,其ΔKII 增大了204.2%,当裂纹面摩擦系数从0.1增加到0.6时,其ΔKII 减小了153.4%。  相似文献   

6.
钢轨横向不均匀支撑刚度对钢轨波磨的影响   总被引:1,自引:1,他引:0  
建立了钢轨波浪形磨损计算模型,模型中考虑车辆轨道垂向横向耦合动力学行为、轮轨三 维滚动接触力学行为和轮轨材料摩擦磨损的循环相互作用关系. 发展了相应的计算程序,并 用1: 1试验装置验证了理论模型. 详细分析了实际线路上由轨枕离散支撑导致的钢轨横向不均匀刚度和不同行车速度对曲线钢轨接触表面不均匀磨损的影响. 通过数值分析可知: (1)列车通过曲线钢轨时,轨枕离散支撑导致的钢轨横向不均匀刚度易引发曲线钢轨波磨的形 成和发展;(2)这类钢轨波磨具有与轨枕间距几乎相等的波长和28~35mm的短波长,这个短波长不均匀磨损主要是由轮轨高频接触振动引起;(3)同一个转向 架4个车轮作用下形成的钢轨波磨最大深度波谷的分布是不同的;(4) 改变过车速度不能有效地抑制轨枕离散支撑导致的钢轨波磨形成和发展速度.  相似文献   

7.
利用砂纸在钢轨试样表面打磨出不同粗糙度等级(1、4和7 μm)的单向磨痕和交叉磨痕(?45°/70°、?20°/90°和45°/70°),利用MMS-2A轮轨摩擦磨损试验机对打磨后的钢轨试样进行滚动试验并分析滚动接触疲劳损伤规律. 结果表明:打磨钢轨的滚动磨损表面粗糙度和损伤均比未打磨钢轨严重,随打磨磨痕粗糙度增加,钢轨滚动磨损表面粗糙度和损伤均呈减小趋势. 当打磨粗糙度为7 μm时,滚动接触疲劳裂纹为枝裂纹,裂纹深度较小;随打磨粗糙度减小,枝裂纹发生贯穿连通形成网状裂纹损伤,裂纹深度增加. 相较于单向打磨钢轨,交叉打磨磨痕钢轨滚动磨损表面粗糙度较低,滚动接触疲劳损伤较轻微. 此外,?45°/70°和45°/70°交叉磨痕的滚动损伤比?20°/90°交叉磨痕钢轨更加轻微.   相似文献   

8.
激光离散处理车轮钢-钢轨钢摩擦副的摩擦学性能研究   总被引:1,自引:0,他引:1  
将激光离散处理前后的车轮试样分别与钢轨试样匹配,利用滚动接触摩擦磨损试验机测试各摩擦副的摩擦系数和磨损率,研究激光离散处理对轮轨摩擦副滚动接触摩擦磨损性能的影响.结果表明:车轮试样经过激光离散处理后,其抗磨损性能大幅增加,对应的轮轨试样摩擦副的摩擦系数小幅增加,其对摩钢轨试样的磨损加剧.未处理车轮试样主要发生剥层磨损并伴随轻微的疲劳磨损;处理后的车轮试样主要发生疲劳磨损并伴随轻微的剥层磨损.这是由于激光离散处理提高了车轮试样表层材料的抗塑性变形能力,从而抑制了材料的剥层磨损.各钢轨试样均发生剥层磨损,但是车轮试样经激光离散处理后,对应钢轨试样的剥层磨损加剧.  相似文献   

9.
轮轨滚动接触下,钢轨表面会产生典型的鱼钩形剥离掉块,其形成机理目前暂未明确.为了探究轮轨滚动接触下钢轨表面裂纹扩展机理,基于最大周向拉应力准则,建立轮轨滚动接触疲劳计算模型,提出裂尖扩展路径预测方法,并对不同初始角度裂纹的扩展路径进行预测.结果表明,钢轨表面微裂纹为Ⅰ-Ⅱ复合型裂纹,随着裂纹长度增加,KⅠ先增加后减小,...  相似文献   

10.
曲线半径对钢轨磨损影响的数值计算与试验分析   总被引:1,自引:1,他引:1  
用数值计算方法详细分析了静态接触情况下,轮轨接触质点间蠕滑力、黏滑区的分布和摩擦功随曲线半径的变化,利用模拟试验研究了曲线半径对钢轨试样磨损特性的影响.结果表明:钢轨磨损量随曲线半径的增大呈非线性减小,在小于1 200 m的小曲线半径范围内,钢轨磨损量值随曲线半径的减小而急剧增大;随着曲线半径的增大,轮轨接触斑中最大滑动量逐渐减小,滑移区的面积减小,而黏着区的面积增大;轮轨接触斑上摩擦功随曲线半径的增大呈非线性的减小.  相似文献   

11.
轮轨三维弹塑性接触应力的算法研究   总被引:4,自引:1,他引:3  
轮轨三维弹塑性接触应力的计算是研究轮轨接触疲劳的前提,本首次将CONTACT程序与有限元方法相结合,考虑钢轨的真实几何形状和边界条件,形成了统一的轮轨滚动接触算法和软件CMEF,快速、有效地计算钢轨中真实的弹塑性应力场。  相似文献   

12.
钢轨表面波浪形磨损研究   总被引:10,自引:3,他引:10  
通过对现场获取的波磨钢轨进行铆钉上,硬度试验分析,探讨了钢轨波磨的形成机理,发现钢轨波磨主要是因为轨面的不均匀塑性变形所致,机车车辆结构的相似和列车运行速度的趋近将加速钢轨波摩的产生,而提高钢轨屈服强度可有效地减轻钢轨波磨。  相似文献   

13.
王雪萍  张军  马贺 《摩擦学学报》2018,38(4):462-467
高速铁路的发展满足日益增长的运输需求,同时带来了轮轨型面磨损问题.通过磨耗预测模型对车轮踏面磨耗量进行预测,及时对磨损的车轮踏面进行镟修,对于列车安全运行具有重要意义.通过建立轮对-钢轨三维有限元模型进行接触计算,提出一种基于有限元算法的摩擦功计算方法,即接触节点的摩擦功等于接触摩擦力与节点相对位移的乘积,实现车轮踏面磨耗预测.通过接触计算,发现接触斑中心处的接触摩擦力较大,相对位移量较小,摩擦功较小;将接触斑摩擦功叠加得到车轮踏面摩擦功,数值曲线呈中部大边缘小,且随牵引力的增大而增大;通过动力学计算,发现列车在直线钢轨运行初期的车轮横移量近似呈正态分布;对列车在直线钢轨上运行不同里程的车轮踏面进行磨耗预测,发现预测型面与实测型面具有相同的磨耗趋势,即车轮名义滚动圆处磨耗最严重,且磨耗宽度随列车运行里程增加而逐渐增大;应用有限元法计算磨耗功并预测车轮踏面磨耗,具有一定的研究意义和实用价值.  相似文献   

14.
对U71Mn K钢轨焊缝及母材在滚动接触疲劳条件下进行模拟试验,对比研究了钢轨焊缝及母材在滚动接触过程中的材料磨损演变行为.结果表明:以U71Mn K为基材的钢轨焊缝部位与非焊缝部位的磨损性能及组织结构在磨损前后均存在显著差异.由于组织结构和力学性能的差异,焊缝区硬度低于非焊缝区,焊缝区摩擦系数、磨损量、磨损率均大于非焊缝区.与非焊缝区相比,钢轨焊缝区容易产生犁沟乃至波磨,表面粗糙度增大,剥落损伤、裂纹、塑性变形严重,磨损性能变坏.无论焊缝区还是非焊缝区,其先前的磨损细化了组织,改善了其磨损性能,减弱了其后的摩擦损伤.  相似文献   

15.
钢轨短波长波浪形磨损的安定性分析   总被引:2,自引:5,他引:2  
针对轮-轨滚动接触的短波长波浪形磨损现象,采用有限元法分析了三维实体模型的接触状态,通过计算分析了高频力作用下接触表面的塑性变形过程.结果表明:在一定的运动条件下,由于重复滚压作用,接触表面发生硬化并达到安定极限状态,生成有规律的短波长变形;钢轨表面塑性变形受枕木间距的影响;就具有随动硬化特性的钢轨材料而言,当摩擦系数μ<0.3时,屈服现象发生在材料表层下方;随着摩擦系数的增大,接触表面的切向力增大,安定极限的临界接触压力Po降低,屈服点移向接触表面,材料失效加快.  相似文献   

16.
采用布氏硬度仪在钢轨试样表面制得不同尺寸的圆形硌伤,利用MMS-2A型微机控制摩擦磨损试验机研究了未硌伤和硌伤钢轨的表面硬度、磨损量及滚动接触疲劳损伤特性.结果表明:与未硌伤钢轨相比,硌伤钢轨的表面硬度和磨损量都有所增加;随硌伤尺寸增加,钢轨磨损量与硬度随之增大.较小尺寸的硌伤坑(1.6 mm)有助于减轻硌伤处疲劳裂纹的产生,硌伤坑超过临界值(2.0 mm)则会加重硌伤区附近疲劳裂纹的萌生并导致支裂纹和垂向裂纹的出现.未硌伤钢轨疲劳裂纹以沿晶扩展为主,大尺寸硌伤钢轨试样的疲劳裂纹呈现穿晶扩展现象.  相似文献   

17.
利用有限元法,考虑材料反复滚压条件下棘轮效应和局部滑动的影响,研究了非稳态机车和车辆车轮载荷作用下轮轨滚动接触的弹塑性应力、应变和变形,进而分析了塑性流动型钢轨波浪形磨损的形成和发展过程以及波谷和波峰处材料的力学行为.结果表明:在非稳态载荷作用下,钢轨接触表面产生不均匀塑性变形引起的波磨,波磨发展速率呈衰减趋势,最终趋于稳定状态;在相同载荷下,与车辆车轮相比,机车车轮对钢轨波磨影响较大;波谷处的残余应力、应变和变形大于波峰处.  相似文献   

18.
结构体系可靠度分析迄今是一个困难的问题.本文首先阐明了等价极值事件的概念,指出在对等价极值事件的概率积分过程中内蕴了不同事件之间的相关性信息.进而对这一概念进行推广,针对一般的复杂失效准则下的结构可靠度分析问题,构造相应的等价极值事件,从而将结构可靠度分析问题转化为极值分布的计算与积分问题.通过对结构静力可靠度与动力可靠度的实例分析表明,基于等价极值事件进行结构可靠度分析是可行的.  相似文献   

19.
纤维增强复合材料(FRP)的强度行为受组分材料、层合结构、载荷等多种因素的影响,且含有许多不确定因素,因此对FRP的可靠性分析十分重要,近年已有许多相关成果发表,但同时考虑随机性和模糊性的研究尚不多见。本文建立了复合材料模糊可靠度分析模型以及数值计算方法模型,通过算例分析了复合材料层合板受面内拉伸载荷作用时的模糊可靠度。将载荷作为随机变量,强度作为模糊变量,并采用蒙特卡罗数值模拟方法,对层合板结构的可靠度进行了计算。分析中采用最大应力准则计算了单元层的破坏概率,然后利用首层失效准则计算了层合板的可靠度。通过对算例的分析和与其他结果的对比,讨论了本文方法的有效性,以及参数敏感性。  相似文献   

20.
对腐蚀管道的模糊可靠度计算方法进行了深入研究,提出了确定性可靠度和模糊可靠度两个基本概念;提出了基于断裂失效判据、基于FAD失效评估图和基于剩余强度3种方法计算模糊可靠度的方法;提出了3种新的方法计算确定性可靠度,即改进的JC法、GA—JC法和改进的Monte-Carlo法.以胜利油田某试验区已加入缓蚀剂的注水管道为例,采用本文建立的计算模糊可靠度的3种计算方法和确定性可靠度的3种方法,分别计算注水管道可靠度随着时间的变化趋势.在模糊可靠度的3种计算方法中,基于剩余强度失效方法比较适中,是计算模糊可靠度较好的方法;在确定性可靠度的3种计算方法中,改进的Monte-Carlo法较好.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号