首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Complexes of lanthanide perchlorates with 4-cyano pyridine-1-oxide, 4-chloro 2-picoline-1-oxide and 4-dimethyl-amino 2-picoline-1-oxide have been isolated for the first time and characterized by analysis, conductance, infrared, NMR and electronic spectra. The complexes of 4-cyano pyridine-1-oxides have the composition Ln(CyPO)6(ClO4)3. 2H2O (Ln=La, Sm, Dy and Ho); Ln(CyPO)7 (ClO4)3. 2H2O (Ln=Pr, Nd, Er and Yb); and Ln(CyPO)5 (ClO4)3. 2H2O (Ln=Gd and Tb). The complexes of 4-chloro 2-picoline-1-oxide analyse for the formulae Ln(CpicO)6 (ClO4)3 (Ln=La, Pr, Nd and Ho); and Ln (CpicO)5 (ClO4)3 (Ln=Er and Yb), and those of 4-dimethylamino 2-picoline-1-oxide for Ln(DMPicO)6 (ClO4)3 (Ln=La and Nd); Ln(DMPicO)7 (ClO4)3 (Ln=Gd, Er and Yb); and Ln(DMPicO)8 (ClO4)3 (Ln=Dy and Ho).  相似文献   

2.
2,4-Lutidine-1-oxide (2,4-LutO) complexes of lanthanide perchlorates of the formulae Ln2(2,4-LutO)13(ClO4)6 (Ln = Pr and Nd) and Ln2(2,4-LutO)15 (ClO4)6 (Ln = La, Tb, Dy, Ho and Yb) have been prepared and characterised by chemical analysis, IR, NMR, conductance and electronic spectral data. Proton NMR data along with the IR data show that the ligand coordinates to the metal ion through the oxygen. Conductance data of the complexes in acetone and nitrobenzene indicate that the perchlorate is not coordinated to the metal ion.  相似文献   

3.
Two calix[4]arenes with four 2-pyridyhnethyl-l-oxide pendant groups at the lower rim have been synthesized, and their Tb(III) and Eu(III) complexes are fluorescent upon UV light excitation at 312 nm. The complexes are not stable in aqueous solution, completely losing their luminescent properties.  相似文献   

4.
Novel complexes of lanthanide perchlorates with 4-nitroquinoline-1-oxide (NQNO) and 5-nitroisoquinoline-2-oxide (NIQNO) have been prepared and characterized. The complexes have the general formulaeLn(NQNO)8(ClO4)3 (whereLn=La-Nd), Ln(NQNO)7(ClO4)3 (whereLn=Gd-Yb),Ln(NIQNO)9(ClO4)3 (whereLn=La-Nd), andLn(NIQNO)7(ClO4)3 (whereLn=Gd-Yb). The IR, proton NMR spectral data indicate the coordination of the N—O group of the ligands to he lanthanide ions.de|Es wurden neue Komplexe von Lanthanidperchloraten mit 4-Nitrochinolin-1-oxid (NQNO) und 5-Nitroisochinolin-2-oxid (NIQNO) dargestellt und charakterisiert. Die Komplexe haben die allgemeinen FormelnLn(NQNO)8(ClO4)3 (mitLn=La-Nd),Ln(NQNO)7(ClO4)3 (mitLn=Gd-Yb),Ln(NIQNO)9(ClO4)3 (mitLn=La-Nd) undLn(NIQNO)7(ClO4)3 (mitLn=Gd-Yb). Die IR- und NMR-Daten zeigen die Koordination der N—O-Gruppe der Liganden zum Lanthanidenion an.
Lanthanid-Perchlorat-Komplexe von 4-Nitrochinolin-1-oxid und 5-Nitroisochinolin-2-oxid
  相似文献   

5.
New complexes of lanthanide nitrates with N, N-diethylantipyrine-4-carboxamide (DEAP), with the general formulae [Ln2(DEAP)3] [NO3]6 (where Ln = La, Pr, Nd, Sm, Tb, Ho, Er, Yb and Y) have been isolated and characterized by chemical analysis and various physical methods such as electrolytic conductance, IR and13C NMR spectral data. Electrolytic conductance values and infrared spectral studies indicate that the nitrate groups are coordinated. Infrared and13C NMR spectral analysis show that the ligand DEAP is coordinated to the tripositive metal ion through the diethylcarboxamide carbonyl and antipyrine carbonyl oxygens in a bidentate fashion.  相似文献   

6.
Five new lanthanide supramolecular complexes, namely, [Sm(oqa)2(H2O)4]2 (ClO4)2·(bpy)2 (1), [Ln(oqa)3]·2H2O [Ln=Sm(2), Gd(3)] and [Ln(oqa)2(NO3)(H2O)] [Ln=Pr(4), Eu(5)] (oqa=4-oxo-1(4H)-quinolineacetate, bpy=4,4′-bipyridine), have been synthesized under hydrothermal conditions. These complexes exhibit three typical structure features. Complex 1 possesses a dimeric structure, which is further connected together through hydrogen bonds and π-π attractions, forming a 3D supramolecular framework. Compounds 2-3 are isomorphous and contain 1D ring-like chains, which are further interconnected by the oqa ligands into 2D sheet-like structures. 4 and 5 exhibit eight-connected 3D network of 424·64-bcu topology. The various coordination modes of carboxylate ligands and the selection of the counterions have clearly affected the topological structures. Furthermore, the solid-state luminescent properties of complexes 1, 2 and 5 were investigated at room temperature and they show intense, characteristic emissions in the visible region.  相似文献   

7.
Classical polarography, cyclic voltammetry, and EPR spectroscopy was used to study electrochemical reduction and oxidation of 3-nitro derivatives of 2-methyl-4-phenylquinoline, the corresponding quinolinium perchlorates, and 1,2- and 1,4-dihydroquinolines. The nitro derivatives of quinoline and 1,2-dihydroquinoline are reduced in the first step at the nitro group; the quinolinium cations are reduced at the heterocycle followed by reduction of the nitro group; and in 1,4-dihydroquinolines, the nitro group is not reduced. Electrochemical reduction processes associated with electron transfer in the heterocycle mainly display the same behavior as established for pyridine derivatives. But important differences were observed in electrochemical oxidation: the N-methyl derivative of 1,4-dihydroquinoline is oxidized significantly more easily than the corresponding N-unsubstituted derivative of 1,4-dihydroquinoline (in the 1,4-dihydropyridine series, the difference in pot! enti als is fairly small), and even more easily than the corresponding N-methyl derivative of 1,2-dihydroquinoline.  相似文献   

8.
Polycrystalline complexes of lanthanide(III) with 4-hydroxy-3-methoxybenzoic acid were obtained as hydrated compounds of general formula Ln(C8H7O4)3?·?nH2O. After slow recrystallization we obtained single crystals of complexes and determined their structures. Praseodymium(III) and neodymium(III) form isostructural dihydrated complexes [Ln(C8H7O4)3(H2O)2], which crystallize in the triclinic system, space group P 1. Sm(III), Eu(III), Gd(III), Ho(III) and Tb(III) compounds are hexahydrates and also crystallize in the triclinic system, space group P 1. Dihydrated compounds form polymeric chains with metal centres linked by oxygen atoms of bridging carboxylates. Each metal ion is coordinated by chelating carboxylic group and two water molecules. Complexes of the second isostructural group form dinuclear units [Ln2(C8H7O4)6(H2O)4]?·?8H2O. Lanthanide(III) ions are linked by oxygen atoms of two chelating–bridging carboxylate groups. In the dimeric structure each metal ion coordinates additionally two chelating carboxylic groups and two water molecules.  相似文献   

9.
Two isomorphic lanthanide complexes [Eu2(L)6(H2O)4] · 2H2O (1) and [Tb2(L)6(H2O)4] · 2H2O (2), (HL = 4-quinoline carboxylic acid) have been synthesized and structurally characterized by single-crystal X-ray diffraction. Both complexes are binuclear and each metal center adopts nine-coordination with nine oxygens from two H2O molecules and carboxylates of three ligands; L exhibits three different coordination modes. Luminescent properties of 1 and 2 at room temperature indicate that the triplet-state level of this ligand matches better with the lowest excited state level of Eu(III) than with Tb(III).  相似文献   

10.
Summary The Intermediate Nelgect of Differential Overlap model for spectroscopy has been extended to lanthanide complexes by including spin-orbit coupling. The method uses atomic spectroscopy and model Dirac-Fock calculations on the lanthanide atoms and ions to obtain ionization potentials, Slater-Condon factors and basis sets. The spin-orbit interaction strength, (nl), is acquired from atomic spectroscopy, and only one-center terms are formally included. Calculation then proceeds using one open-shell operator for all sevenf-orbitals initially assumed degenerate to generate starting non-relativistic molecular orbitals for the subsequent configuration-interaction and spin-orbit calculation.Calculations are performed on the monoxides La, Ce, Gd, and Lu where there are ample experimental assignments. In general, the results are quite good, suggesting that the calculated energies, oscillator strengths and spin-orbit splittings can be used with success in assigning spectra, even in those cases wherejj-coupling is of intermediate strength.  相似文献   

11.
The near infrared spectra of water in aqueous solutions of La(ClO4)3, Pr(ClO4)3, Nd(ClO4)3, Gd(ClO4)3, Er(ClO4)3, Yb(ClO4)3, Lu(ClO4)3, and NaClO4 have been measured in the concentration range from 0.3 to 2.5 mol-dm–3, at 25°C. The relative contents of free OH groups in the 1.0, 1.6, and 2.2M solutions have been calculated from extinction coefficients for water at 1160 nm. They increase with increasing salt concentration and are greater in solutions of the lighter lanthanide perchlorates at any fixed molarity. The results are discussed in terms of the stoichiometry and structure of hydrated cations of trivalent lanthanides.  相似文献   

12.
Hydrothermal reactions of 1,10-phenanthroline (phen), 1,3-adamantanedicarboxylic acid (H2L) and lanthanide chlorides yielded six compounds: [Ln(L)(HL)(phen)] (Ln=Pr, 1; Nd, 2), [Ln(L)(HL)(phen)(H2O)] (Sm, 3; Eu, 4), [Tb(L)(HL)(phen)(H2O)]2·2H2O (5), [Er3(L)4(OH)(phen)]2 (6). Compounds 1-4 are structurally featured by one-dimensional polymeric chains; 5 hold binuclear structure constructed from eight-coordinated lanthanide center LnN2O6 of distorted bicapped trigonal prism bridged by dicarboxylate ligands; 6 shows that erbium ions are in mono and bicapped trigonal prismatic geometries, respectively, which are further connected by μ3-OH to give rise to trinuclear structure. Thermogravimetric analyses of 1, 3 and 5 were performed. Fluorescent measurements of 4 and 5 were carried out, respectively.  相似文献   

13.
The electrochemical behavior and spectral properties of a series of symmetrical 2,3,9,10,16,17,23,24,2’,3’,9’, 10’,16’,17’,23’,24’-hexadecaalkyl-substituted lanthanide complexes (R8Pc)2Ln (R = H, Me, Et, Bun; Ln = Eu, Dy, Lu) were studied. Regularities of changing the parameters under study were established, depending on the nature of lanthanide and substituents in the phthalocyanine macroligands. The position of the intervalence band of the complexes in the near-IR region depends on the effective distance between the macroligands and also on the electronic effect of the substituents. Correlations between the electrochemical and spectral properties of the complexes were found.__________Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 184–189, January, 2005.  相似文献   

14.
2-acetamidopyridine-1-oxide (AcAmPyO) complexes of six lanthanide perchlorates, with the general composition Ln(AcAmPyO)5 (ClO4)3, have been synthesized and characterized by analysis, molar conductance, infrared, proton NMR and electronic spectral data. Infrared and conductance studies indicate the ionic nature of the anion. The coordination of the ligand through the N-O and C=O moieties is shown by the infrared and proton NMR spectral analysis.  相似文献   

15.
Five complexes have been synthesized by the reaction of lanthanide(III) nitrate with 2-thenoyltrifluoroacetone (HTTA) and p-hydroxybenzoic acid (L). The complexes have been characterized by elemental analysis, molar conductivity, FT-IR, UV-Vis, 1H NMR, TG-DTA, XPS, and transmission electron microscope. The general formula of the complexes is Na[Ln(TTA)3L] (Ln?=?La3+,?Ce3+,?Nd3+,?Eu3+,?Er3+). The antibacterial activities indicate that all five complexes exhibit antibacterial ability against Escherichia coli and Staphylococcus aureus with broad antimicrobial spectrums. The antitumor activity of the five complexes against K562 tumor cell in vitro is measured using methyl thiazolyl tetrazolium (MTT) colorimetry. The results show that the complexes induce K562 tumor cell apoptosis, and the complexes exhibit inhibitory effect on leukemia K562 cells.  相似文献   

16.
The infrared spectra of 4-Cl 2-Me, 4-Cl 3-Me and 6-Cl 3-Me phenols have been recorded. The vibrational spectrum has been analysed assuming that the molecules belong toC s point group and a tentative assignment of the observed frequencies to various modes of vibration has been proposed. The near ultraviolet absorption spectrum of these compounds has also been recorded. Assuming the transition to be electronically allowed the strongest band on the longer wavelength side has been assigned as the (0, 0) band in each case. The spectrum has been analysed in terms of several excited state frequencies which have been correlated with the ground state frequencies observed in the infrared spectrum.  相似文献   

17.
Six new lanthanide Schiff-base complexes were synthesized by reactions of hydrated lanthanide nitrates with H2L (H2L?=?N,N′-bis(salicylidene)-1,2-cyclohexanediamine) and characterized by elemental analysis, DTA–TG, IR, UV and luminescence spectra. The microanalyses and spectroscopic analyses indicate a 1D polymeric structure with the formula of [Ln(H2L)(NO3)3(MeOH)2] n [Ln?=?La (1), Ce (2), Pr (3), Sm (4), Gd (5) & Dy (6)]. The fluorescence spectrum of complex 4 exhibited Sm3+ centered, Schiff-base sensitized orange fluorescence, indicating that energy levels of the triplet state of H2L match closely to the lowest excited state (4G5/2) of Sm3+ ion.  相似文献   

18.
Conditions for the preparation of light lanthanide 4-chlorophthalates were investigated and their composition, solubility in water at 295 K, IR spectra and thermal decomposition were determined. 4-Chlorophthalates of La–Nd(III) were prepared as complexes with general formula NaLn[ClC6H3(CO2)2]2, whereas compounds of Sm and Eu have general formula Ln2[ClC6H3(CO2)2]3·6H2O. During heating all complexes decompose to oxides with intermediate formation of oxochlorides. The carboxylate groups in the complexes studied are bidentate bridging (Sm, Eu) or bidentate chelating and bridging (La–Nd).  相似文献   

19.
本文合成了镧系金属高氯酸盐与1,8-萘啶氮氧化物形成的Ln(C8H6N2O)4(ClO4)3(Ln=Sm-Lu)的固体配合物. 进行了元素分析、红外光谱、差热-热重分析和摩尔电导测定, 并作了Eu(ClO4)2与1,8-萘啶氮氧化物配合物的X射线单晶结构分析. 结果表明Eu^3^+离子与4个配体的氧原子和氮原子配位, 配位数为8.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号