首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We report a frequency measurement of the 1S0-3P0 transition of 87Sr atoms in an optical lattice clock. The frequency is determined to be 429 228 004 229 879(5) Hz with a fractional uncertainty that is comparable to state-of-the-art optical clocks with neutral atoms in free fall. The two previous measurements of this transition were found to disagree by about 2 x 10(-13), i.e., almost 4 times the combined error bar and 4 to 5 orders of magnitude larger than the claimed ultimate accuracy of this new type of clocks. Our measurement is in agreement with one of these two values and essentially resolves this discrepancy.  相似文献   

2.
We present a new evaluation of an 87Sr optical lattice clock using spin polarized atoms. The frequency of the 1S03P0 clock transition is found to be 429 228 004 229 873.6 Hz with a fractional uncertainty of 2.6×10-15, a value that is comparable to the frequency difference between the various primary standards throughout the world. This measurement is in excellent agreement with a previous one of similar accuracy [Phys. Rev. Lett. 98, 083002 (2007)].  相似文献   

3.
We observe a localized phase of ultracold bosonic quantum gases in a 3-dimensional optical lattice induced by a small contribution of fermionic atoms acting as impurities in a Fermi-Bose quantum gas mixture. In particular, we study the dependence of this transition on the fermionic (40)K impurity concentration by a comparison to the corresponding superfluid to Mott-insulator transition in a pure bosonic (87)Rb gas and find a significant shift in the transition parameter. The observed shift is larger than expected based on a simple mean-field argument, which indicates that disorder-related effects play a significant role.  相似文献   

4.
We show that the current method of determining superfluidity in optical lattices based on a visibly sharp bosonic momentum distribution n(k) can be misleading, for even a normal Bose gas can have a similarly sharp n(k). We show that superfluidity in a homogeneous system can be detected from the so-called visibility (v) of n(k)--that v must be 1 within O(N(-2/3)), where N is the number of bosons. We also show that the T=0 visibility of trapped lattice bosons is far higher than what is obtained in some current experiments, suggesting strong temperature effects and that these states can be normal. These normal states allow one to explore the physics in the quantum critical region.  相似文献   

5.
We theoretically study the dipolar motion of bosonic atoms in a very shallow, strongly confined 1D optical lattice using the parameters of the recent experiment [C. D. Fertig, Phys. Rev. Lett. 94, 120403 (2005)]. We find that, due to momentum uncertainty, a small, but non-negligible, atom population occupies the unstable velocity region of the corresponding classical dynamics, resulting in the observed dissipative atom transport. This population is generated even in a static vapor, due to quantum fluctuations which are enhanced by the lattice and the confinement, and is not notably affected by the motion of atoms or finite temperature.  相似文献   

6.
郭文祥  刘伍明 《物理》2016,45(6):370-377
光晶格是一种人造光晶体,它是由反向传播激光束干涉形成的周期性势阱构成的。光晶格的周期、势深等参量可以通过调节激光的强度和频率等来准确控制。作为一个纯净可控的实验平台,光晶格已经逐渐成长为模拟多体系统的最便利的工具之一。文章对光晶格中冷原子进行了简单的介绍,重点阐述了玻色—爱因斯坦凝聚、激光冷却、光晶格和量子相变等内容。  相似文献   

7.
Rubidium Rydberg atoms are laser excited and subsequently trapped in a one-dimensional optical lattice (wavelength 1064 nm). Efficient trapping is achieved by a lattice inversion immediately after laser excitation using an electro-optic technique. The trapping efficiency is probed via analysis of the trap-induced shift of the two-photon microwave transition 50S→51S. The inversion technique allows us to reach a trapping efficiency of 90%. The dependence of the efficiency on the timing of the lattice inversion and on the trap laser power is studied. The dwell time of 50D(5/2) Rydberg atoms in the lattice is analyzed using lattice-induced photoionization.  相似文献   

8.
锶原子光晶格钟   总被引:1,自引:0,他引:1       下载免费PDF全文
林弋戈  方占军 《物理学报》2018,67(16):160604-160604
进入21世纪以来,锶原子光晶格钟经历了快速的发展,系统频移的不确定度指标已经超越现有的秒定义基准铯原子喷泉钟,进入到10~(-18)量级,体现了人类精密测量能力的最高水平,是精密测量物理的热点研究内容.本综述简要介绍了锶原子光晶格钟的发展水平;详细介绍了锶原子光晶格钟的各个组成部分和关键技术、如何进行精密光谱探测和闭环锁定以及各项系统频移的不确定度评估方法和锶原子跃迁绝对频率测量的方法等;最后简要介绍了锶光钟的应用和未来发展趋势.  相似文献   

9.
We present a unifying theoretical framework that describes recently observed many-body effects during the interrogation of an optical lattice clock operated with thousands of fermionic alkaline earth atoms. The framework is based on a many-body master equation that accounts for the interplay between elastic and inelastic pp-wave and ss-wave interactions, finite temperature effects and excitation inhomogeneity during the quantum dynamics of the interrogated atoms. Solutions of the master equation in different parameter regimes are presented and compared. It is shown that a general solution can be obtained by using the so called Truncated Wigner Approximation which is applied in our case in the context of an open quantum system. We use the developed framework to model the density shift and decay of the fringes observed during Ramsey spectroscopy in the JILA 8787Sr and NIST 171171Yb optical lattice clocks. The developed framework opens a suitable path for dealing with a variety of strongly-correlated and driven open-quantum spin systems.  相似文献   

10.
We study ultracold collisions in fermionic ytterbium by precisely measuring the energy shifts they impart on the atoms' internal clock states. Exploiting Fermi statistics, we uncover p-wave collisions, in both weakly and strongly interacting regimes. With the higher density afforded by two-dimensional lattice confinement, we demonstrate that strong interactions can lead to a novel suppression of this collision shift. In addition to reducing the systematic errors of lattice clocks, this work has application to quantum information and quantum simulation with alkaline-earth atoms.  相似文献   

11.
We create molecules from fermionic atoms in a three-dimensional optical lattice using a Feshbach resonance. In the limit of low tunneling, the individual wells can be regarded as independent three-dimensional harmonic oscillators. The measured binding energies for varying scattering length agree excellently with the theoretical prediction for two interacting atoms in a harmonic oscillator. We demonstrate that the formation of molecules can be used to measure the occupancy of the lattice and perform thermometry.  相似文献   

12.
The feasibility of using feedback for stabilization of atoms in an off-resonance optical lattice is demonstrated. In the proposed scheme, the collective coordinate of atoms is measured and instantaneously compensated for via a spatial shift of the potential of the optical lattice. An external action that provides for heating of atoms with subsequent decrease in their lifetime in the lattice is simulated by a set of independent reservoirs, each interacting only with one atom. A quantum-mechanical analysis of the problem shows that the use of the feedback within the proposed scheme makes it possible to stabilize the energy of atoms at a level below the equilibrium energy.  相似文献   

13.
We report direct single-laser excitation of the strictly forbidden (6s2)1S0 <--> (6s6p)3P0 clock transition in 174Yb atoms confined to a 1D optical lattice. A small (approximately 1.2 mT) static magnetic field was used to induce a nonzero electric dipole transition probability between the clock states at 578.42 nm. Narrow resonance linewidths of 20 Hz (FWHM) with high contrast were observed, demonstrating a resonance quality factor of 2.6 x 10(13). The previously unknown ac Stark shift-canceling (magic) wavelength was determined to be 759.35 +/- 0.02 nm. This method for using the metrologically superior even isotope can be easily implemented in current Yb and Sr lattice clocks and can create new clock possibilities in other alkaline-earth-like atoms such as Mg and Ca.  相似文献   

14.
Existing optical lattice clocks demonstrate a high level of performance but they remain complex experimental devices. In order to address a wider range of applications including those requiring transportable devices, it will be necessary to simplify the laser systems and reduce the amount of support hardware. Here we demonstrate two significant steps towards this goal: demonstration of clock signals from a Sr lattice clock based solely on semiconductor laser technology, and a method for finding the clock transition (based on a coincidence in atomic wavelengths) that removes the need for extensive frequency metrology hardware. Moreover, the unexpected high contrast in the signal revealed evidence of density dependent collisions in 88Sr atoms.  相似文献   

15.
Jin-Qi Wang 《中国物理 B》2022,31(9):90601-090601
Sideband cooling is a key technique for improving the performance of optical atomic clocks by preparing cold atoms and single ions into the ground vibrational state. In this work, we demonstrate detailed experimental research on pulsed Raman sideband cooling in a $^{171}$Yb optical lattice clock. A sequence comprised of interleaved 578 nm cooling pulses resonant on the 1st-order red sideband and 1388 nm repumping pulses is carried out to transfer atoms into the motional ground state. We successfully decrease the axial temperature of atoms in the lattice from 6.5 μK to less than 0.8 μK in the trap depth of 24 μK, corresponding to an average axial motional quantum number $\langle n_z\rangle<0.03$. Rabi oscillation spectroscopy is measured to evaluate the effect of sideband cooling on inhomogeneous excitation. The maximum excitation fraction is increased from 0.8 to 0.86, indicating an enhancement in the quantum coherence of the ensemble. Our work will contribute to improving the instability and uncertainty of Yb lattice clocks.  相似文献   

16.
An atomic gas subject to a commensurate periodic potential generated by an optical lattice undergoes a superfluid-Mott insulator transition. Confining a strongly interacting gas to one dimension generates an instability where an arbitrary weak potential is sufficient to pin the atoms into the Mott state; here, we derive the corresponding phase diagram. The commensurate pinned state may be detected via its finite excitation gap and the Bragg peaks in the static structure factor.  相似文献   

17.
朱少兵  钱军  王育竹 《中国物理 B》2017,26(4):46702-046702
Superexchange and inter-orbital spin-exchange interactions are key ingredients for understanding(orbital) quantum magnetism in strongly correlated systems and have been realized in ultracold atomic gases.Here we study the spin dynamics of ultracold alkaline-earth atoms in an optical lattice when the two exchange interactions coexist.In the superexchange interaction dominating regime,we find that the time-resolved spin imbalance shows a remarkable modulated oscillation,which can be attributed to the interplay between local and nonlocal quantum mechanical exchange mechanisms.Moreover,the filling of the long-lived excited atoms affects the collapse and revival of the magnetization dynamics.These observations can be realized in state-dependent optical lattices combined with the state-of-the-art advances in optical lattice clock spectroscopy.  相似文献   

18.
The conservation of magnetization, or atomic spin angular momentum, is broken for anisotropic dipolar interactions. As a result, the Einstein-de Haas effect, or the transfer of spin to spatial angular momentum, arises because the total angular momentum is conserved. We identify the regime for observing this with two 87Rb atoms in a single well, stimulated by the recent result for a condensate. The two-atom system is found to be more easily observed and confirmed with the addition of a periodically modulated magnetic field. Our result of utilizing a feeble dipolar interaction may find potential applications in precision measurements.  相似文献   

19.
An ultrastable optical clock based on neutral atoms trapped in an optical lattice is proposed. Complete control over the light shift is achieved by employing the 5s(2) 1S0-->5s5p 3P0 transition of 87Sr atoms as a "clock transition." Calculations of ac multipole polarizabilities and dipole hyperpolarizabilities for the clock transition indicate that the contribution of the higher-order light shifts can be reduced to less than 1 mHz, allowing for a projected accuracy of better than 10(-17).  相似文献   

20.
We investigate the energy spectrum of fermionized bosonic atoms, which behave very much like spinless noninteracting fermions, in optical lattices by means of the perturbation expansion and the retarded Green's function method. The results show that the energy spectrum splits into two energy bands with single-occupation; the fermionized bosonic atom occupies nonvanishing energy state and left hole has a vanishing energy at any given momentum, and the system is in Mott-insulating state with a energy gap.Using the characteristic of energy spectra we obtained a criterion with which one can judge whether the Tonks-Girardeau (TG) gas is achieved or not.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号