首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Laser-ablated W atoms react with CH4 in excess argon to form the CH3-WH, CH2=WH2, and CH[triple bond]WH3 molecules with increasing yield in this order of product stability. These molecules are identified from matrix infrared spectra by isotopic substitution. Tungsten methylidene and methylidyne hydride molecules are reversibly interconverted by alpha-H transfers upon visible and ultraviolet irradiations. Matrix infrared spectra and DFT/B3LYP calculations show that CH[triple bond]WH3 is a stable molecule with C3v symmetry, but other levels of theory were required to describe agostic distortion for CH2=WH2. Analogous reactions with Cr gave only CH3-CrH, which is calculated to be by far the most stable product.  相似文献   

2.
The molecular structures of ethynylbenzene and s-triethynylbenzene have been accurately determined by gas-phase electron diffraction and ab initio/DFT MO calculations and are compared to that of p-diethynylbenzene from a previous study [Domenicano, A.; Arcadi, A.; Ramondo, F.; Campanelli, A. R.; Portalone, G.; Schultz, G.; Hargittai, I. J. Phys. Chem. 1996, 100, 14625]. Although the equilibrium structures of the three molecules have C2v, D3h, and D2h symmetry, respectively, the corresponding average structures in the gaseous phase are best described by nonplanar models of Cs, C3v, and C2v symmetry, respectively. The lowering of symmetry is due to the large-amplitude motions of the substituents out of the plane of the benzene ring. The use of nonplanar models in the electron diffraction analysis yields ring angles consistent with those from MO calculations. The molecular structure of ethynylbenzene reported from microwave spectroscopy studies is shown to be inaccurate in the ipso region of the benzene ring. The variations of the ring C-C bonds and C-C-C angles in p-diethynylbenzene and s-triethynylbenzene are well interpreted as arising from the superposition of independent effects from each substituent. In particular, experiments and calculations consistently show that the mean length of the ring C-C bonds increases by about 0.002 A per ethynyl group. MO calculations at different levels of theory indicate that though the length of the C[triple bond]C bond of the ethynyl group is unaffected by the pattern of substitution, the C(ipso)-C(ethynyl) bonds in p-diethynylbenzene are 0.001-0.002 A shorter than the corresponding bonds in ethynylbenzene and s-triethynylbenzene. This small effect is attributed to conjugation of the two substituents through the benzene ring. Comparison of experimental and MO results shows that the differences between the lengths of the C(ipso)-C(ethynyl) and C(ipso)-C(ortho) bonds in the three molecules, 0.023-0.027 A, are correctly computed at the MP2 and B3LYP levels of theory but are overestimated by a factor of 2 when calculated at the HF level.  相似文献   

3.
Infrared absorption spectra of gaseous CH2Cl2 in the regions of 1200-12000 cm-1 were measured using a Bruker IFS 120HR Fourier transform spectrometer in conjunction with a multipass cell. 47 vibrational levels of overtone and combinational spectral lines of the CH stretching (v1, v6), bending (v2), and rocking(v8) modes were analyzed and assigned. Utilizing the normal mode model and considering the coupling among CH stretching, bending and rocking vibrations, values of the harmonic frequency ωi, the anharmonic constant xij, and the coefficients of Fermi and the Darling-Dennison resonances of v1, v6, v2 and v8 modes were also determined from experimental spectral data with nonlinear least-square fitting. These spectral constants reproduced the experimental levels very well. These results showed that Fermi resonance between CH stretching and rocking vibrations (ki88=-254.63 cm-1) is stronger than that between CH stretching and bending vibrations (k122 = 54.87 cm-1); and that Darling-Dennison resonances between CH stretching and bending vibrations (k1166=-215.28 cm-1) is also much stronger than that between CH bending and rocking vibrations (k2288=-5.72 cm-1).  相似文献   

4.
Reaction of laser-ablated Mo atoms with CH(4) in excess argon forms the CH(3)-MoH, CH(2)=MoH(2), and CH(triple bond)MoH(3) molecules, which are identified from infrared spectra by isotopic substitution and density functional theory frequency calculations. These simple methyl, methylidene, and methylidyne molybdenum hydride molecules are reversibly interconverted by alpha-H transfers upon visible and ultraviolet irradiations. The methylidene dihydride CH(2)=MoH(2) exhibits CH(2) and MoH(2) distortion and agostic interaction to a lesser degree than CH(2)=ZrH(2). Molybdenum methylidyne trihydride CH(triple bond)MoH(3) is a stable C(3v) symmetry molecule.  相似文献   

5.
Fourier transform-infrared (4000-400 cm-1) and Raman (3500-50 cm-1) spectral measurements have been made for 6-methyl-4-bromomethylcoumarin. Equilibrium structures, harmonic vibrational frequencies, infrared intensities, and depolarization ratios have been computed at RHF/6-31G* and B3LYP/6-31G* levels of theory. Twisting CH2Br moiety in the geometry optimization leads to the most stable conformer lacking symmetry (C1). This is reflected in the richness of bands in the experimental spectra. A complete assignments of the bands, aided by the ab initio calculations, has been proposed for the 6-methyl-4-bromomethylcoumarin. Due to lack of symmetry, several normal vibrations have been found to be mixed ones.  相似文献   

6.
A study of the internal vibrations of triiodomesitylene (TIM) is presented. It is known from X-rays diffraction at 293 K that the molecule has nearly D(3h) symmetry because of the large delocalization of the methyl protons. By using Raman and infrared spectra recorded at room temperature, a first assignment is done by comparing TIM vibrations with those of 1,3,5-triiodo- and 1,3,5-trimethyl-benzene. This assignment is supported by DFT calculations by using the MPW1PW91 functional with the LanL2DZ(d,p) basis set and assuming C(3h) symmetry. The agreement between the calculated and experimental frequencies is very good: always better than 97% for the observed skeletal vibrations. The calculations overestimate the methyl frequencies by 7%, and experiment shows only broad features for these excitations. Because a neutron diffraction study had established that the TIM conformation at 14 K is not exactly trigonal, new theoretical calculations were done with C(s) symmetry. This shows that all previous E' and E' modes of vibration are split by 2-12 cm(-1). This is confirmed by infrared, Raman, and inelastic neutron scattering spectra recorded below 10 K. Apart from two frequencies, all the TIM skeleton vibrations have been detected and assigned by using C(s) symmetry. For the methyl vibrations, experiment has confirmed the splitting of the previously degenerate modes; only some small discrepancies remain in the assignment. This is partly due to the difference of the model conformation used in the calculations and the crystallographic one. All these results confirm that each of the three methyl groups has not only its own tunnel splitting but also a different specific spectroscopic behavior for all the molecular modes.  相似文献   

7.
The molecular structures of phthalocyaninatozinc (HPc-Zn) and hexadecafluorophthalocyaninatozinc (FPc- Zn) are determined using the gas electron diffraction (GED) method and high-level density functional theory (DFT) quantum chemical calculations. Calculations at the B3LYP/6-311++G** level indicate that the equilibrium structures of HPc-Zn and FPc-Zn have D4h symmetry and yield structural parameters in good agreement with those obtained by GED at 480 and 523 degrees C respectively. The calculated force fields indicate that both molecules are flexible. Normal coordinate calculations on HPc-Zn yield five vibrational frequencies (one degenerate) in the range 22-100 cm(-1), and ten vibrational frequencies ranging from 13 to 100 cm(-1) (three degenerate) for FPc-Zn. The high-level force field calculations confirm most of the previous vibrational assignments, and some new ones are suggested. The out-of-plane vibration of the Zn atom in HPc-Zn was studied in detail optimizing models in which the distance from the Zn atom to the two symmetry equivalent diagonally opposed N atoms (h) was fixed. The calculations indicate that the vibrationally activated vertically displacement of the Zn atom is accompanied by distortion of the ligand from D4h to C2v symmetry. The average height, h, at the temperature of the GED experiment was calculated to be 14.5 pm. Small structural changes indicate that a full F substitution on the benzo-subunits do not significantly alter the geometry, however there are indications that the benzo-subunits may shrink slightly with perfluorination.  相似文献   

8.
Lithium and sodium complexes of dimethyl ether (DME) and dimethoxyethane (DXE) were produced by reactions of laser-vaporized metal atoms with organic vapors in a pulsed nozzle cluster source. The mono-ligand complexes were studied by photoionization and pulsed field ionization zero electron kinetic energy (ZEKE) spectroscopy. Vibrationally resolved ZEKE spectra were obtained for Li(DME), Na(DME) and Li(DXE) and a photoionization efficiency spectrum for Na(DXE). The ZEKE spectra were analyzed by comparing with the spectra of other metal-ether complexes and with electronic structure calculations and spectral simulations. Major vibrations measured for the M(DME) (M=Li,Na) ions were M-O and C-O stretches and M-O-C and C-O-C bends. These vibrations and additional O-Li-O and O-C-C-O bends were observed for the Li(DXE) ion. The M(DME) complexes were in C2v symmetry with the metal atom binding to oxygen, whereas Li(DXE) was in a C2 ring configuration with the Li atom attaching to both oxygen atoms. Moreover, the ionization energies of these complexes were measured from the ZEKE or photoionization spectra and bond dissociation energies were derived from a thermodynamic cycle.  相似文献   

9.
用INDO系列方法对C28H3Cl, C28H2Cl2, C28HCl3, CH3Cl, CH2Cl2, CHCl3进行了几何构型优化, C28H3Cl, C28HCl3, CH3Cl, CH3Cl为C3v对称性,C28H2Cl2, CH2Cl2为C2v对称性, 这六个分子的基态都是稳定闭壳层分子, 以此构型为基础计算了上述分子的电子光谱, C28H4-nCln(n=1~3)的电子光谱属于理论预测性质。  相似文献   

10.
Ab initio calculations are reported for three of four possible conformers of 1,3-dichloropropane. The fourth conformer, with Cs symmetry, has a predicted enthalpy difference of more than 1500 cm(-1) from the most stable conformer from each calculation regardless of the basis set used, so there is little chance of observing it. Thus, there is no evidence in the infrared or Raman spectrum of the presence of a fourth conformer. The order of stability given by the ab initio calculations is C2(GG)>C1(AG)>C2v(AA)>Cs(GG'), where A indicates the anti form for one of the CH2Cl groups and G indicates the gauche conformation for the other CH2Cl group relative to the plane of the carbon atoms. Almost every band observed can be confidently assigned to one or another of the conformers. Many observed bands proved to be of a composite nature, with several nearly coincident vibrations of different conformers contributing to the band contour. Nonetheless, a complete assignment of fundamentals is possible for the most stable C2 conformer, and 5 of the fundamentals of the C2v conformer and 13 those of the C1 conformer can be confidently assigned.  相似文献   

11.
12.
Dichromium oxide clusters, Cr2O2, Cr2O4, and Cr2O6, have been prepared and characterized by matrix isolation infrared spectroscopy and quantum chemical calculations. Laser-evaporated chromium atoms reacted with O2 in solid argon to form the previously characterized CrO2 molecules, which further reacted with chromium atoms to form Cr2O2 spontaneously on annealing. The Cr2O2 cluster is determined to have a chainlike CrOCrO structure. The rhombic ring isomer, which was predicted to be more stable than the CrOCrO structure, was not formed at the present experimental conditions. The Cr2O4 cluster was formed from the barrierless dimerization of the chromium dioxide molecules, which is characterized to have a planar D2h symmetry. TheCr2O6 cluster was produced under UV light irradiation. It is determined to have a singlet ground state with a nonplanar D2h symmetry.  相似文献   

13.
The vibrational spectra of platinum nanoparticles (2.4-9 nm) capped with poly(N-vinylpyrrolidone) (PVP) were investigated by deep UV-Raman and FTIR spectroscopy and compared with those of pure PVP. Raman spectra of PVP/Pt show selective enhancement of C=O, C-N, and CH2 vibrational modes attributed to the pyrrolidone ring. Selective enhancement of ring vibrations is attributed both to the resonance Raman effect and SERS chemical enhancement. A red shift of the PVP carbonyl frequency on the order of 60 cm-1 indicates the formation of strong >C=O-Pt bonds. It is concluded that PVP adheres to the nanoparticles through a charge-transfer interaction between the pyrrolidone rings and surface Pt atoms. Heating the Pt nanoparticles under reducing conditions initiates the decomposition of the capping agent, PVP, at a temperature 100 degrees C below that of pure PVP. Under oxidizing conditions, both PVP/Pt and PVP degrade to form amorphous carbon.  相似文献   

14.
Lyon JT  Andrews L 《Inorganic chemistry》2007,46(12):4799-4808
Group 4 transition metal methylidene difluoride complexes (CH2=MF2) are formed by the reaction of methylene fluoride with laser-ablated metal atoms and are isolated in an argon matrix. Isotopic substitution of the CH2F2 precursor and theoretical computations (B3LYP and CCSD) confirm product identifications and assignments. Our calculations indicate that the CH2=MF2 complexes have near C2v symmetry and are considerably more stable than other possible products (CH2(mu-F)MF and CHF=MHF). The primary reaction exothermicity provides more than enough energy to activate the initial bridge-bonded CH2(mu-F)MF products on the triplet potential energy surface to complete an alpha-F transfer to form the very stable CH2=MF2 products. Analogous experiments with CHF3 produce CHF=TiF2, which is not distorted at the C-H bond, whereas the heavier group 4 metals form lower-energy triplet HC/MF3 complexes, which contain weak degenerate C(p)-M(d) pi-bonding interactions. Comparisons are made with the CH2=MHF methylidene species, which showed considerable agostic distortions.  相似文献   

15.
Reactions of laser-ablated Al, Ga, In, and Tl atoms with H2O2 and with H2 + O2 mixtures diluted in argon give new absorptions in the O-H and M-O stretching and O-H bending regions, which are assigned to the metal mono-, di-, and trihydroxide molecules. Isotopic substitutions (D2O2, 18O2, 16,18O2, HD, and D2) confirm the assignments, and DFT calculations reproduce the experimental results. Infrared spectra for the Al(OH)(OD) molecule verify the calculated C2v structure. The trihydroxide molecules increase on annealing from the spontaneous reaction with a second H2O2 molecule. Aluminum atom reactions with the H2 + O2 mixtures favor the HAl(OH)2 product, suggesting that AlH3 generated by UV irradiation combines with O2 to form HAl(OH)2.  相似文献   

16.
Reactions of laser-ablated scandium, yttrium, lanthanum, and several lanthanide metal atoms with dimethyl ether have been studied using matrix isolation infrared spectroscopy. Identifications of the major products, M(CH(3)OCH(3)) and CH(3)OMCH(3) (M = Sc, Y, La, Ce, Gd, Tb, Yb, and Lu), are supported by experiments with deuterium substitution as well as theoretical calculations. It is found that most ground-state metal atoms react with dimethyl ether to give the M(CH(3)OCH(3)) complexes spontaneously on annealing, which isomerize to the CH(3)OMCH(3) insertion products with visible irradiation. Density functional calculations reveal that the M(CH(3)OCH(3)) complexes possess C(2v) symmetry with metal atoms bound to the oxygen side of dimethyl ether, and bent geometries are found for the inserted CH(3)OMCH(3) molecules with direct M-O and C-O bonds. All of these products have the same ground states as their corresponding metal atoms except for Tb. Although the Lu(CH(3)OCH(3)) complex is predicted to be a stable molecule, it is not observed in the experiment due to the low energy barrier for the subsequent C-O bond insertion reaction.  相似文献   

17.
Andrews L  Cho HG  Wang X 《Inorganic chemistry》2005,44(13):4834-4842
Laser-ablated titanium atoms react with methane to form the insertion product CH3TiH, which undergoes a reversible photochemical alpha-H transfer to give the methylidene complex CH2=TiH2. On annealing a second methane activation occurs to produce (CH3)2TiH2. These molecules are identified from matrix infrared spectra by isotopic substitution (CH4, 13CH4, CD4, CH2D2) and comparison to DFT frequency calculations. The computed planar structure for singlet ground-state CH2=TiH2 shows CH2 distortion and evidence for agostic bonding (H-C-Ti, 91.4 degrees), which is supported by the spectra for CHD=TiHD.  相似文献   

18.
Polarized Raman spectral changes with respect to temperature were investigated for Pr(BrO3)3.9H2O single crystals. FTIR spectra of hydrated and deuterated analogues were also recorded and analysed. Temperature dependent Raman spectral variation have been explained with the help of the thermograms recorded for the crystal. Factor group analysis could propose the appearance of BrO3 ions at sites corresponding to C3v (4) and D3h (2). Analysis of the vibrational bands at room temperature confirms a distorted C3v symmetry for the BrO3 ion in the crystal. From the vibrations of water molecules, hydrogen bonds of varying strengths have also been identified in the crystal. The appearance upsilon1 mode of BrO3- anion at lower wavenumber region is attributed to the attachment of hydrogen atoms to the BrO3- anion. At high temperatures, structural rearrangement is taking place for both H2O molecule and BrO3 ions leading to the loss of water molecules and structural reorientation of bromate ions causing phase transition of the crystal at the temperature of 447 K.  相似文献   

19.
Structures of nickel cluster ions adsorbed with methanol, Ni3+ (CH3OH)m (m = 1-3) and Ni4+ (CH3OH)m (m = 1-4) were investigated by using infrared photodissociation (IR-PD) spectroscopy based on a tandem-type mass spectrometer, where they were produced by passing Ni3,4+ through methanol vapor under a multiple collision condition. The IR-PD spectra were measured in the wavenumber region between 3100 and 3900 cm-1. In each IR-PD spectrum, a single peak was observed at a wavenumber lower by approximately 40 cm-1 than that of the OH stretching vibration of a free methanol molecule and was assigned to the OH stretching vibrations of the methanol molecules in Ni3,4+ (CH3OH)m. The photodissociation was analyzed by assuming that Ni3,4+ (CH3OH)m dissociate unimolecularly after the photon energy absorbed by them is statistically distributed among the accessible modes of Ni3,4+ (CH3OH)m. In comparison with the calculations performed by the density functional theory, it is concluded that (1) the oxygen atom of each methanol molecule is bound to one of the nickel atoms in Ni3,4+ (defined as molecular chemisorption), (2) the methanol molecules in Ni3,4+ (CH3OH)m do not form any hydrogen bonds, and (3) the cross section for demethanation [CH4 detachment from Nin+ (CH3OH)] is related to the electron density distribution inside the methanol molecule.  相似文献   

20.
Coinage and alkali metal mixed clusters, M4Na- (M = Cu, Au) have been investigated experimentally using photoelectron spectroscopy and computationally at correlated ab initio levels. The related Cu4Li-, Ag4Li-, Ag4Na-, and Au4Li- clusters as well as the neutral Cu4Li2 and Cu4Na2 clusters have also been studied computationally. The calculations show that the two lowest isomers of the negatively charged clusters include a pyramidal C4v structure and a planar C2v species. For Cu4Li- and Cu4Na-, the C4v structure is calculated at correlated ab initio level to be 30.9 and 16.9 kJ/mol below the planar C2v isomer, whereas the planar isomers of Au4Li- and Au4Na- are found to be 29.7 and 49.4 kJ/mol below the pyramidal ones. For Ag4Li- and Ag4Na-, the pyramidal isomers are the lowest ones. Comparison of the calculated and measured photoelectron spectra of Cu4Na- and Au4Na- shows that the pyramidal Cu4Na- cluster of C4v symmetry and the planar Au4Na- of C2v symmetry are detected experimentally. Calculations of the magnetically induced current density in Cu4Li- and Cu4Li2 using the Gauge-Including Magnetically Induced Current (GIMIC) method show that strong ring currents are sustained mainly by the highest-occupied molecular orbital primarily derived from the Cu 4s. The GIMIC calculations thus show that the Cu4(2-) ring is -aromatic and that the d orbitals do not play any significant role for the electron delocalization effects. The present study does not support the notion that the square-planar Cu4(2-) is the first example of d-orbital aromatic molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号