首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CO_2是一种储量丰富且廉价易得的可再生C1资源.以CO_2为原料的羧化反应可将CO_2高效转化成羧酸及其衍生物等高附加值化学品.例如,CO_2和环氧化物反应生成环状碳酸酯属于"原子经济"反应,是有效利用CO_2的方法之一,其产物环状碳酸酯广泛用于极性有机溶剂、电池电解液和化妆品等.由于CO_2化学性质非常稳定,不易活化,制备环状碳酸酯的传统方法是以金属卤化物或金属配合物为催化剂在高温高压下进行反应.因此,开发出操作简便且能耗低的绿色技术用于合成环状碳酸酯面临巨大挑战.最近研究表明,电催化技术可使环氧化物和CO_2在温和条件下转化为环状碳酸酯.已报道的电催化反应研究重点都是如何通过多相或均相电催化还原CO_2的方式使环氧化物能够在温和条件下进行羧化反应.然而,CO_2电还原生成的CO_2·-自由基非常活泼,在其扩散到溶液中与环氧化物反应之前易在电极上直接转化为CO和碳酸盐等副产物,从而导致羧化反应较低的电流效率.Ema课题组报道环氧化物与CO_2羧化反应经历三个步骤,即开环反应、CO_2插入反应和闭环反应,其中开环反应活化能最大,是羧化反应决速步骤.与已报道的电催化途径不同,本文通过建立一个由电化学反应和羧化反应组成的催化反应体系,旨在通过降低开环反应活化能来促进环氧化物羧化反应.在电化学反应过程中,由牺牲阳极提供羧化反应必需的路易斯酸,即电制镁盐;在羧化反应过程中,通过电制镁盐和咪唑溴盐的协同作用实现环氧化物和CO_2在温和条件下高效率地转化为环状碳酸酯.实验首先选取环氧苯乙烷为反应原料,考察了电制镁盐、共催化剂的阳离子以及羧化反应温度对目标产物产率的影响.如果羧化反应过程中没有镁盐或直接用等量溴化镁代替电制镁盐,羧化产率仅为5.4%和35.5%,而电制镁盐条件下羧化反应产率高达90.7%,表明电制镁盐作为路易斯酸催化剂对提高羧化反应产率是必不可少的.比较了在N2和CO_2气氛中分别电解制备得到的镁盐的催化性能.N2气氛中电制镁盐更高的催化性能可能与溶剂乙腈或支持电解质的阳离子在阴极发生电还原生成的物质有关.该电还原产物可部分代替溴离子与电制镁盐配对,由于其体积更大,一定程度上提高了电制镁盐的亲电性,有利于羧化反应进行.如果用四丁基溴化铵代替咪唑溴盐作为共催化剂,羧化反应产率从90.7%降为65.5%.羧化反应过程中溴离子对电制镁盐的配对能力受共催化剂阳离子静电引力的牵制而减弱,共催化剂的阳离子对溴离子的静电引力越强,溴离子对电制镁盐亲电性的影响就越弱.前期研究成果表明,在乙腈溶液中咪唑阳离子对阴离子的静电引力明显强于季铵阳离子,由此可认为当咪唑溴盐作为共催化剂时提高了电制镁盐的亲电性,促进了环氧化物的开环反应.提高羧化反应温度虽然可以降低环氧化物开环反应的活化能,但也会降低CO_2在乙腈溶液中的溶解度,50°C反应较为合适.在最优反应条件下考察了该催化体系对其他环氧化物羧化反应的普适性,所得环状碳酸酯产率为48.3%–90.7%.  相似文献   

2.
CO_2是目前最大的碳源之一,将CO_2用于合成有机化合物无疑是清洁能源利用的一种新策略,作为CO_2参与有机合成反应的主要产物,羧酸及其衍生物也有着广泛的应用.在众多CO_2参与的羧化反应方法中,C—H键与CO_2的直接羧化反应是最高效的同时也是目前研究十分热门的一类有机化学反应.对近年来CO_2与不同杂化态C—H键的直接羧化反应的研究进行总结,主要讲述过渡金属催化的反应体系.  相似文献   

3.
二氧化碳是一种储量丰富且廉价易得的可再生性碳一资源。化学工作者建立起来的一系列过渡金属催化的CO_2作为羧化试剂的新反应方法学,成功地将CO_2高效转化成在精细有机合成中有着重要用途的羧酸及其衍生物等高附加值的化学品.CO_2通常作为亲电试剂或环加成底物与各种亲核试剂或含不饱和键的化合物进行反应.最近,过渡金属催化的两种不同亲电试剂的还原交叉偶联反应作为一种构建碳-碳键的直接而有效的新方法受到了研究者的极大关注.此种方法不同于传统的交叉偶联反应,不再使用难以制备且对水和氧敏感的金属有机化合物,原料易得且操作非常简便.其中亲电试剂与CO_2的直接还原羧化反应便是一种合成功能羧酸的更绿色的新方法.Martin课题组之前报道了首例钯催化的芳基溴代物与CO_2的还原羧化反应.Tsuji课题组也发现了反应条件更温和的镍催化的芳基或烯基氯代物与CO_2的直接羧化反应.随后Martin课题组发展了苄基氯代物、芳基或苄基酯、烯丙基酯等一系列亲电试剂直接还原羧化反应.而对于含有β氢的非活化烷基亲电试剂,由于其不易进行氧化加成反应,同时原位形成的烷基金属试剂容易进行β氢消除及二聚等副反应,使得这类底物参与的直接还原羧化反应极具挑战性.最近,Martin课题组在含有β氢的非活化烷基亲电试剂与CO_2的还原羧化反应研究方面取得了突破.使用锰粉作为还原剂,氯化镍乙二醇二甲醚配合物与2,9-二乙基-1,10-邻菲罗啉配体组成的催化体系能有效抑制β氢消除及二聚等副反应,在室温及常压条件下便可高效地将一系列含有β氢的非活化烷基溴代物转化成相应的羧酸.此催化体系的底物适用性很宽,酯基、氰基、缩醛、醛、酮甚至醇羟基和酚羟基等活泼基团都能被容忍.他们应用此反应成功实现了具有生物活性的羧酸小分子化合物的一步合成.虽然确切的反应机理目前还不够清楚,但初步的实验表明催化循环中可能包含一价镍物种参与的单电子转移过程.基于此反应体系,他们随后也实现了包含炔基官能团的非活化烷基溴代物与CO_2的还原环化/羧化串联反应,环状α,β-不饱和羧酸产品的顺反构型可以很容易地通过底物及配体的选择进行控制.总之,Martin课题组发展的镍催化体系在温和条件下实现了含有β氢的非活化烷基亲电试剂与CO_2的还原羧化反应.此反应底物适用性宽,原料易得,操作简便,为合成功能团羧酸提供了一种行之有效的方法.此反应的成功也极大扩展了还原交叉偶联反应的底物适用范围.随着机理研究的深入,更多新型高效的非活化烷基亲电试剂与CO_2的还原羧化反应将会出现.  相似文献   

4.
CO_2是廉价的Cl源,同时具有无毒、储量丰富的优点,符合绿色化学发展要求.利用CO_2构筑新的C-C键是化学固定CO_2的重要方法.β,γ-不饱和酯类结构单元是许多生物活性分子的重要组成部分,经由双π-烯丙基钯中间体与CO_2反应,合成新的β,γ-不饱和酯类化合物,具有重要意义.CO_2与有机硼化合物的羧化反应己有报道,有机硼化合物具有低毒、对水不敏感等优点.但是己报道的羧化Suzuki偶联反应存在诸多缺点:(1)需要使用含膦或者氮杂环卡宾配体的催化剂,而这些催化剂的制备过程使前期实验步骤变得冗长,同时反应液的酸化后处理过程也会造成环境污染;(2)有机硼试剂的官能团兼容范围窄,限制了底物范围的拓展.本课题组以原位生成的纳米钯粒子为催化剂,在CO_2存在的温和条件下,高效实现了苄氯与烯丙基硼酸频哪醇酯的羧化Suzuki偶联反应.反应过程中无其它配体加入,反应结束后不需要酸化或酯化的后处理过程.该反应将具有广泛的官能团兼容性.本文以TBAB稳定的纳米钯粒子为催化剂,在温和条件下,实现了氯甲基芳香化合物、烯丙基硼酸频哪醇酯和CO_2的三组分羧化Suzuki偶联反应.最佳反应条件为:Pd(acac)_2(5mol%)、TBAB(0.7mmol,1.4 equiv.)、KF(1mmol,2.0 equiv.)、苄基卤代物(0.5 mmol)、烯丙基硼酸频哪醇酯(0.6 mmol,1.2 equiv.)、CO_2(2.0 MPa)、溶剂THF(5 mL),50℃反应24h.在最佳反应条件下,苯环、萘环以及杂芳环的氯甲基化合物均可发生该羧化反应.苯环上取代基的位置对产物的收率有影响.当使用1-溴甲基萘作为底物时反应也能够发生,收率与1-氯甲基萘作为底物时的收率相当.与已报道有机硼试剂的羧化反应相比,该反应体系无需加入配体,原位生成了纳米钯粒子,避免了催化剂或者配体的复杂制备过程.该反应中,氟离子的存在是必要的,对烯丙基硼酸频哪醇酯具有活化作用.  相似文献   

5.
本文研究了系列金属卟啉对苄基氯(PhCH_2Cl)和CO_2电羧化反应的催化活性.用熔点,MS,IR,UV鉴别产物为苯乙酸苄酯,利用高效液相色谱(HPLC)定量分析了羧化产物.选出最佳电羧化电解电位为-1.6V(相对于饱和甘汞电极,vs SCE,下同).并对催化活性较高的钴卟啉系列配合物进行了深入研究,探讨了金属卟啉具有催化活性的原因,认为能形成M(I)中间体的金属卟啉配合物,具有较高的催化活性.  相似文献   

6.
CO2是一种储量丰富且廉价易得的可再生 C1资源.以 CO2为原料的羧化反应可将 CO2高效转化成羧酸及其衍生物等高附加值化学品.例如, CO2和环氧化物反应生成环状碳酸酯属于“原子经济”反应,是有效利用 CO2的方法之一,其产物环状碳酸酯广泛用于极性有机溶剂、电池电解液和化妆品等.由于 CO2化学性质非常稳定,不易活化,制备环状碳酸酯的传统方法是以金属卤化物或金属配合物为催化剂在高温高压下进行反应.因此,开发出操作简便且能耗低的绿色技术用于合成环状碳酸酯面临巨大挑战.
  最近研究表明,电催化技术可使环氧化物和 CO2在温和条件下转化为环状碳酸酯.已报道的电催化反应研究重点都是如何通过多相或均相电催化还原 CO2的方式使环氧化物能够在温和条件下进行羧化反应.然而, CO2电还原生成的 CO2?-自由基非常活泼,在其扩散到溶液中与环氧化物反应之前易在电极上直接转化为 CO和碳酸盐等副产物,从而导致羧化反应较低的电流效率.
   Ema课题组报道环氧化物与 CO2羧化反应经历三个步骤,即开环反应、CO2插入反应和闭环反应,其中开环反应活化能最大,是羧化反应决速步骤.与已报道的电催化途径不同,本文通过建立一个由电化学反应和羧化反应组成的催化反应体系,旨在通过降低开环反应活化能来促进环氧化物羧化反应.在电化学反应过程中,由牺牲阳极提供羧化反应必需的路易斯酸,即电制镁盐;在羧化反应过程中,通过电制镁盐和咪唑溴盐的协同作用实现环氧化物和 CO2在温和条件下高效率地转化为环状碳酸酯.
  实验首先选取环氧苯乙烷为反应原料,考察了电制镁盐、共催化剂的阳离子以及羧化反应温度对目标产物产率的影响.如果羧化反应过程中没有镁盐或直接用等量溴化镁代替电制镁盐,羧化产率仅为5.4%和35.5%,而电制镁盐条件下羧化反应产率高达90.7%,表明电制镁盐作为路易斯酸催化剂对提高羧化反应产率是必不可少的.比较了在 N2和 CO2气氛中分别电解制备得到的镁盐的催化性能. N2气氛中电制镁盐更高的催化性能可能与溶剂乙腈或支持电解质的阳离子在阴极发生电还原生成的物质有关.该电还原产物可部分代替溴离子与电制镁盐配对,由于其体积更大,一定程度上提高了电制镁盐的亲电性,有利于羧化反应进行.如果用四丁基溴化铵代替咪唑溴盐作为共催化剂,羧化反应产率从90.7%降为65.5%.羧化反应过程中溴离子对电制镁盐的配对能力受共催化剂阳离子静电引力的牵制而减弱,共催化剂的阳离子对溴离子的静电引力越强,溴离子对电制镁盐亲电性的影响就越弱.前期研究成果表明,在乙腈溶液中咪唑阳离子对阴离子的静电引力明显强于季铵阳离子,由此可认为当咪唑溴盐作为共催化剂时提高了电制镁盐的亲电性,促进了环氧化物的开环反应.提高羧化反应温度虽然可以降低环氧化物开环反应的活化能,但也会降低 CO2在乙腈溶液中的溶解度,50°C反应较为合适.在最优反应条件下考察了该催化体系对其他环氧化物羧化反应的普适性,所得环状碳酸酯产率为48.3%–90.7%.  相似文献   

7.
CO_2是一种无毒、廉价易得、储量丰富的可再生资源,通过化学方法将其转化为具有高附加值的化学品已成为实现可持续发展的战略性课题。其中,以CO_2作为羧化试剂合成羧酸及其衍生物的研究成为CO_2催化活化领域的研究热点。本文分类介绍了不同过渡金属催化的不饱和烃与CO_2的羧化反应方面的研究进展。  相似文献   

8.
CO_2作为主要的温室气体,CO_2固定利用引起了广泛的关注,同时它还是一种丰富无毒的C1资源,将其作为原料合成高附加值的化学品,不仅可以缓解温室效应,而且还可以缓解能源危机,具有重要的经济和战略意义.在CO_2的资源化利用中,制备2-苯基丙酸意义重大.2-苯基丙酸是一种重要的医药中间体,可用于合成布洛芬、酮洛芬等用途广泛的药剂.因此,其制备方法引起了人们的广泛关注.在典型的合成2-苯基丙酸均相催化体系中,经常使用Co,Ni和Pd等过渡金属催化剂,虽然得到的目标产物产率较高,但催化剂成本高,且很难循环使用,从而限制了其实际使用.电催化法为2-苯基丙酸的合成提供了一条新的途径.本课题组利用手性钴配合物作为催化剂电羧化不对称合成了手性2-苯基丙酸,其产率和ee值分别为37%和83%.此外,我们还制备了Co负载的纳米Ag电极,以其为工作电极不对称羧化1-溴乙基苯与CO_2反应,得到目标产物2-苯基丙酸的产率为58%,ee值为73%.在前期工作的基础上,本文利用无负载的纳米银电极(Ag NPs)为工作电极,电催化1-溴乙基苯与CO_2羧化制备2-苯基丙酸.银纳米电极是利用水合肼还原Ag NO3溶液经抽滤、干燥、压片而成.为了研究Ag NPs催化CO_2与1-溴乙基苯反应,在一室型电解池中,以Ag NPs为阴极,镁电极为牺牲阳极,以CH_3CN-TEAI(0.1 mol/L)溶液为电解质溶液,底物浓度为0.1 mol/L,饱和CO_2的氛围下进行恒电流电解,经后处理,可得目标产物2-苯基丙酸.为了提高2-苯基丙酸的产率,我们探讨了工作电极、电解电量、电流密度以及反应温度等条件对反应的影响,从而得到优化条件为反应温度0℃、电解电量2.5F/mol、电流密度5 m A/cm2,此时2-苯基丙酸的产率可达98%.在优化条件下,我们还研究了一系列苯基卤代物,如溴化苄、溴苯、α-溴苯乙酸、2-溴代萘、二苯基溴甲烷和1-氯乙基苯的电羧化反应.反应后可以得到相应的羧酸,并取得较好的收率(67%-88%).结果表明,纳米银电极对催化该类反应具有很好催化活性和普适性.本文所采用的条件都比较温和,无需高温或高压.在最优条件下,所制纳米银电极可重复使用至少10次,且保持催化活性不变.经过X射线衍射和扫描电镜表征发现,重复使用后纳米银电极的组成和微结构都保持不变.因此,该纳米银电极具有制备方法简单、催化活性高,稳定性好等特点,具备一定的应用前景.  相似文献   

9.
CO_2是一种对大气环境有重要影响的温室气体,同时又是一种廉价的碳源.合成氨工业中用NH_3和CO_2反应生成尿素和碳酸氢铵是CO_2大规模利用的典范.近年来研究表明,在高效催化剂的作用下,CO_2可以作为原料参与精细化学品的合成,如CO_2与H_2(或有机硅)和胺反应可以生成N-甲酰胺和N,N-二甲基胺类化合物.同时,CO_2还可以作为原料参与大宗基础化学品的合成,如CO_2用H_2(或有机硅烷)还原可以生成甲(乙)酸,CO_2和H_2在不同反应条件下可以生成低碳烯烃或甲醇等高附加值的化学品,这为CO_2的转化和利用开辟了新途径.本文对近年来CO_2与H_2(或有机硅烷)和胺反应生成N-甲酰胺和N,N-二甲基胺类化合物、H_2(或有机硅烷)还原CO_2生成甲酸、CO_2和H_2生成低碳烯烃和甲醇的一些高效催化剂体系、催化反应工艺条件、催化反应机理等方面的研究进展进行了归纳、评述和展望,以期对开发CO_2催化转化为高附加值化学品的新工艺提供参考.  相似文献   

10.
本文研究了系列金属卟啉对苯基氯(phCH~2Cl)和CO~2电羧化反应的催化活性.用熔点,MS,IR,UV鉴别产物为苯乙酸卟脂,利用高效液相色谱(HPLC)定量分析了羧化产物,选出最佳电羧化电解电位为-1.6v(相对于饱和甘汞电极,vs.SCE,下同). 并对催化活性较高的钴卟啉系列配合物进行了深入研究. 探讨了金属卟啉具有催化活性的原因,认为能形成M(Ⅰ)中间体的金属卟啉配合物.具有较高的催化活性.  相似文献   

11.
CO2由于其含量丰富、无毒和低成本等特性可作为有机合成中的重要C1源,因此,使用CO2作为C1源合成高附加值的化合物具有重要的意义.本综述重点介绍了在电化学条件下使用CO2作为亲电试剂参与有机化合物羧化反应的最新进展.主要介绍了非活化有机卤化物、不饱和烯烃化合物和一些特殊化合物的电化学羧化,并就使用和不使用牺牲阳极进行了详细分类,讨论了这些反应的反应机制,为今后此类反应在有机合成中的应用提供参考.  相似文献   

12.
设计了一种新型双室隔膜电解池,可以在碳酸丙烯酯(PC)/四丁基高氯酸铵(TBAP)电解液中,将CO_2电还原为CO.由于CO_2电还原反应本身有H_2O生成,深入探究了H_2O对有机电解液电化学性能和电极反应过程的影响作用及相关机理.结果表明,当PC/TBAP中含有H_2O时,电解液电导率增大,黏度降低,CO_2溶解性增强.由于碳酸丙烯酯具有疏水性,当含H_2O量超过6.8%时,H_2O从PC/TBAP中分层析出,电解液的性质不会因水的积累而发生改变.反应过程中,H_2O对反应中间体(CO_2~(·-)自由基)具有稳定作用,使得过电位降低、电流密度升高.在PC/TBAP/6.8%H_2O中电还原CO_2时,生成CO的最高电流效率达到89%,电流密度达到9.18 mA/cm~2,电极不中毒,电化学反应可以稳定进行.  相似文献   

13.
针对日益严峻的CO_2过量排放问题,利用可再生能源驱动CO_2转化利用是理想的解决方案.采用电催化、光催化、光电催化以及生物光电催化CO_2还原的技术手段,以CO_2为原料获得高附加值的化学品或高能量密度的燃料,是当前世界范围内的研究热点.本文综述了近3年光、电、生物等催化CO_2转化所取得的重要研究进展,并对其未来发展方向进行了展望.  相似文献   

14.
CO2是廉价的C1源,同时具有无毒、储量丰富的优点, 符合绿色化学发展要求. 利用 CO2构筑新的 C–C 键是化学固定CO2的重要方法. Β,γ-不饱和酯类结构单元是许多生物活性分子的重要组成部分, 经由双π-烯丙基钯中间体与 CO2反应, 合成新的β,γ-不饱和酯类化合物, 具有重要意义. CO2与有机硼化合物的羧化反应已有报道, 有机硼化合物具有低毒、对水不敏感等优点. 但是已报道的羧化 Suzuki 偶联反应存在诸多缺点: (1) 需要使用含膦或者氮杂环卡宾配体的催化剂, 而这些催化剂的制备过程使前期实验步骤变得冗长, 同时反应液的酸化后处理过程也会造成环境污染; (2) 有机硼试剂的官能团兼容范围窄, 限制了底物范围的拓展. 本课题组以原位生成的纳米钯粒子为催化剂, 在 CO2存在的温和条件下, 高效实现了苄氯与烯丙基硼酸频哪醇酯的羧化 Suzuki 偶联反应. 反应过程中无其它配体加入, 反应结束后不需要酸化或酯化的后处理过程. 该反应将具有广泛的官能团兼容性.本文以 TBAB 稳定的纳米钯粒子为催化剂, 在温和条件下, 实现了氯甲基芳香化合物、烯丙基硼酸频哪醇酯和 CO2的三组分羧化 Suzuki 偶联反应. 最佳反应条件为: Pd(acac)2(5 mol%)、TBAB (0.7 mmol, 1.4 equiv.)、KF (1 mmol, 2.0 equiv.)、苄基卤代物 (0.5 mmol)、烯丙基硼酸频哪醇酯 (0.6 mmol, 1.2 equiv.)、CO2(2.0 Mpa)、溶剂 THF (5 mL), 50 oC 反应 24 h. 在最佳反应条件下, 苯环、萘环以及杂芳环的氯甲基化合物均可发生该羧化反应. 苯环上取代基的位置对产物的收率有影响. 当使用 1-溴甲基萘作为底物时反应也能够发生, 收率与 1-氯甲基萘作为底物时的收率相当. 与已报道有机硼试剂的羧化反应相比, 该反应体系无需加入配体, 原位生成了纳米钯粒子, 避免了催化剂或者配体的复杂制备过程. 该反应中, 氟离子的存在是必要的, 对烯丙基硼酸频哪醇酯具有活化作用.  相似文献   

15.
在一室型电解池中, 以饱和CO2的N,N-二甲基甲酰胺(DMF)为溶液, Mg为牺牲阳极, 不锈钢、钛、铜、镍和银为工作电极, 通过电化学方法固定CO2, 在恒电流电解的条件下研究了对甲氧基苯乙酮的电羧化反应, 得到了重要的有机合成中间体2-羟基-2-(4-甲氧基苯基)-丙酸甲酯. 电羧化产率受支持电解质种类、电极材料、电流密度、电解电量和反应温度等影响. 经过反应条件的优化, 目标产物在恒定电流密度为5.0 mA/cm2的条件下产率达到63%. 同时, 以玻碳电极-Pt丝螺旋电极-Ag/AgI/I-为三电极体系, 研究了对甲氧基苯乙酮的电化学行为, 根据底物在通入CO2前后循环伏安图的变化推测了对甲氧基苯乙酮的电羧化反应机理.  相似文献   

16.
由于近年来可持续发展战略的兴起和对全球变暖问题关注,二氧化碳(CO_2)作为资源用于化学合成已经引起越来越多化学家的兴趣.而在利用CO_2的研究中,催化氢化CO_2是CO_2资源利用的重要手段之一,均相催化反应具有反应条件温和、活性高及催化体系易于调控等优点,使得CO_2均相催化氢化尤其是催化生产甲酸、甲醛、甲醇以及胺类化合物衍生物等方面成为当前CO_2资源合理利用的重要课题,具有广阔的应用前景.对近年来金属有机络合物催化的均相氢化CO_2的研究进展进行了综述,主要介绍了催化生产甲酸、甲醛、甲醇以及作为C1合成子方面中的均相催化剂的种类与结构、活性与选择性以及均相催化氢化CO_2的反应机理等方面的研究.  相似文献   

17.
过渡金属催化CO2参与的不饱和烃还原羧化反应是合成羧酸及丙烯酸类化合物的重要途径, 具有重要的研究价值和工业应用潜力.过渡金属试剂与不饱和烃、CO2生成稳定的金属杂环内酯或金属羧酸盐.还原剂能够与金属杂环内酯或金属羧酸盐发生转金属作用, 重新生成活泼催化剂, 从而实现催化剂的循环利用.本文总结了还原剂, 包括有机金属试剂、硅烷、硼烷、金属粉末、甲醇和氢气等在不饱和烃与CO2的还原羧化反应中的应用, 并着重描述其反应特点和反应机理.  相似文献   

18.
二氧化碳(CO2)作为一碳合成子具有储量丰富、无毒无污染、绿色清洁等优点,因此在有机化学领域使用CO2作为一碳合成子反应一直以来受到广泛的关注.过渡金属催化不饱和烃与CO2反应合成羧酸是CO2作为一碳合成子的重要应用之一,这类反应可以通过串联羧化的策略实现,过渡金属催化不饱和烃先与有机金属试剂反应在原位生成新的有机金属...  相似文献   

19.
太阳能光催化是CO_2转化和利用的新兴技术,直接利用洁净充足的太阳能将自然界富有的"温室气体"CO_2转化成化学燃料,不仅有利于消除大气温室效应,而且能缓解能源短缺问题,因而成为人们研究的一个重要方向.但目前CO_2的吸附和转换效率还很低,这是太阳能光催化CO_2资源化的最大障碍.高性能光催化剂的设计和合成是这项技术的关键.针对CO_2光还原反应的特异性,理想的光催化材料应该具有以下功能:强的CO_2吸附能力和高的光催化活性.将光催化剂与对CO_2具有高吸附性的多孔材料结合,就可以将CO_2吸附并富集在吸附剂周围的光催化剂表面上以进行催化转化,因此基于高效多孔吸附材料构筑光催化体系成为光催化转化CO_2的重要研究方向之一.CO_2的循环利用包括吸附和转化两方面,高吸附量的多孔材料是获得CO_2高转化效率的前提.本文首先以多孔材料结构参数及性能指标为主线,对无机多孔材料、金属有机框架材料及微孔有机聚合物材料的研究进展及应用前景进行了评述.通过对多孔材料的改性和新型多孔材料的开发,CO_2的吸附能力得到一定的提升,但是仅仅依靠多孔材料的吸附分离,不能实现CO_2中的碳资源循环.在此基础上,本文重点评述了多孔光催化材料在CO_2光催化转化中的最新研究进展.采用多孔材料与光催化剂结合,可增加材料的比表面积,在界面处暴露更多的活性位点,有利于光催化CO_2转化的进行;同时,通过孔结构和基团调控,可以调控光催化剂的反应活性和产物选择性.特别是金属有机框架材料与微孔有机聚合物材料,改变构建单元的官能团和制备技术还可以实现光谱响应范围的调控,提高太阳光的利用率.大量文献对比发现,引入较高CO_2吸附效率的多孔材料构建光催化体系,CO_2光催化转化的效率及产物选择性显著提高.最后,本文对多孔材料在CO_2光催化转化领域的研究现状与亟待解决的问题进行了剖析,提出了下一步可能的研究方向:(1)提高多孔材料自身的稳定性如耐水性能与光/热稳定性;(2)发展光催化材料在多孔载体的微观组装方法,不影响CO_2吸附效率的前提下提高光催化活性;(3)深入研究多孔光催化材料内部与表面的CO_2转化机理,为进一步提高吸附与转化效率提供理论指导.  相似文献   

20.
大气中过高的CO_2浓度严重影响自然界的碳循环平衡,对全球气候和生态环境提出了严峻挑战.但同时CO_2作为一种潜在的碳资源,可通过催化转化生成高附加值的化学品. CO_2电化学还原反应(CO_2RR)可利用太阳能、风能等可再生能源产生的电能将CO_2直接转化生成高附加值化学品和燃料,有助于构建"碳中性"的能源循环利用网络,具有极具潜力的应用前景.然而,活化稳定的CO_2分子需克服一定的过电势,且由于反应在水相中进行, CO_2RR与析氢反应互相竞争,因此开发高效、廉价、稳定的催化剂一直是CO_2RR研究的难点.研究表明,含有金属-氮(M-Nx)活性位的催化材料如卟啉、酞菁等大环配合物、金属有机骨架材料以及通过热解法制备的金属-氮-碳(M-N-C)材料具有优异的CO_2RR性能.本文从实验和理论两方面综述了近年来该类材料领域的相关进展,重点介绍了金属位点种类、配体结构、载体选择对催化剂本征活性的影响,并讨论了反应条件优化对CO_2RR性能提升的作用.结合原位表征和理论计算结果探讨了含M-Nx材料反应条件下活性位的结构及反应路径,为合理设计和优化CO_2RR催化剂体系提供了新思路.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号