首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
从广涛  卢怡君 《物理化学学报》2022,38(6):2106008-22
液流电池因为具有高储能效率,低成本,以及可解耦的能源储存和功率输出设计,被广泛认为是适用于大型储能的首选技术。但是长期以来,液流电池在电网中的大规模部署一直受限于现有的金属基活性材料的高成本和较低的储能密度。因其潜在的低成本,丰富的原材料来源,高度可调的分子结构,具有氧化还原活性的有机分子作为潜在的液流电池活性材料,受到越来越多的关注。本文首先介绍了液流电池的工作机制,以提升非水系有机液流电池的储能密度的策略为重点,总结了非水系液流电池中有机活性材料的研究进展。并讨论了这些策略存在的问题和未来的发展方向。  相似文献   

2.
锂离子混合型电容器兼有锂离子电池和超级电容器的优点,在电化学储能领域具有广泛的应用前景. 但其产业化仍存在一系列的基础及工艺方面的问题,具体包括器件结构设计、电极材料筛选、预嵌锂工艺和电解液与电极的界面等. 本文结合作者课题组的研究工作介绍了近年来高能量密度的锂离子混合型电容器的研究进展,内容涉及锂离子电容器正/负极材料的筛选、预嵌锂工艺的优化、内并联结构的锂离子电池型超级电容器复合正极组成材料的调控、隔膜的选择、电解液的组成、以及器件的高/低温性能,分析了锂离子电容器的容量衰减机制,探讨了锂离子电池型超级电容器的储能机制,提出了未来对高能量密度的锂离子混合型电容器研究的展望.  相似文献   

3.
正超级电容器是一种新型的绿色储能装置,具有功率密度高、循环寿命长、充放电速度快、可靠性高、绿色环保等特性,在移动通讯、航空航天、电动汽车和国防等领域有着巨大的应用潜力。近年来,随着超级电容器研究的不断深入、相关技术产业的快速发展,其应用领域正在不断的扩展、市场前景十分广阔1,2。电极材料是超级电容器的关键所在,它决定着该储能器件的主要性能指标,如  相似文献   

4.
超级电容器具有功率密度大、循环寿命长等优点,但同时面临着能量密度低等缺点. 胶体离子超级电容器是最近开发的一种新型赝电容器,同时具有高功率密度和高能量密度的特点. 胶体离子超级电容器能够充分利用多价态金属阳离子的多电子氧化还原反应,完全释放储存的潜在电能,从而提高超级电容器的能量密度. 由于胶体离子的存在,缩短了电子、离子的扩散长度,加快了氧化还原反应动力学,从而保持高的功率密度. 本文主要介绍胶体离子超级电容器的发展过程、最新研究进展以及需要进一步开展的研究工作,作者希望从一个新的角度去研究发展下一代高性能电化学储能设备,实现新的突破.  相似文献   

5.
超级电容器只有兼具高质量和高体积能量密度才能拥有更广泛的应用价值.本文采用具有纳米结构及高填充密度的RuO_2(纳米球,1.69 g·cm-3)和Co-Ni氧化物(纳米片,2.14 g·cm-3)分别作为负极和正极材料,成功地构筑了氧化物非对称超级电容器.所得不对称超级电容器具有高电压窗口、高质量比容量(217.5 F·g-1)和高体积比容量(412.3 F·cm-3)、高质量能量密度(61.8 Wh·kg-1)和高体积能量密度(121Wh·L-1)的优良性能,在1.4 V的电压下以2 A·g-1的电流密度历经5000次循环后比容量保持率为87%.  相似文献   

6.
与传统的二次电池相比,超级电容器具有长寿命、高功率密度的特点,但是能量密度较低.本文主要介绍了混合超级电容器的发展状况以及电极材料的最新研究进展.目前有许多研究工作者都致力于改善超级电容器体系的能量密度,一个有效的途径是提高电容器电极材料的比电容,另一个途径则应用不对称混合型超级电容器体系,即一个电极采用电极活性炭电极...  相似文献   

7.
传统超级电容器受低能量密度的限制,在当今器件研发中需更加关注电极材料结构-组成-性能研究。 本文总结了新型赝电容器的发展历程及其研发过程中存在的挑战与解决措施,着重从胶体离子超级电容器电极材料等新型的电极材料和氧化还原电解质两个方面进行综述。 原位合成的胶体离子超级电容器电极材料比非原位合成的电极材料具有更高的反应活性,并且以近似离子的状态存在,有效增加了电极材料的比容量。 氧化还原电解质的使用在不改变电极材料的前提下,进一步提高了超级电容器的能量密度。 初步介绍了新型锂离子电容器。 锂离子电容器同时使用电池型材料和电容型材料,可提高其能量密度。 依据当前超级电容器的研发现状,未来有望将电池材料和电容器材料结合使用,进而形成电池电容器或电容电池,使其同时具有高的能量密度和功率密度。  相似文献   

8.
高比能超级电容器的研究进展   总被引:1,自引:0,他引:1  
与传统蓄电池相比,超级电容器具有高功率密度、长循环寿命和使用温度范围宽等优势,但其能量密度较低.本文对超级电容器的结构、分类以及发展状况进行了简要介绍,重点阐述了本实验室近年来在研制高性能超级电容器方面的相关工作.主要从两个方面来提高超级电容器的能量密度:(1)通过采用中性水系电解液、有机电解液和离子液体提高对称型碳基超级电容器的电压窗口;(2)应用非对称型超级电容器,即一个电极采用具有法拉第赝电容电极材料或电池电极材料,而另一个电极则采用具有双电层电容的电极材料.同时介绍了由锂离子电池电极材料/活性炭作为正极,石墨作为负极组成的锂离子混合型超级电容器.最后,对超级电容器的发展方向进行了展望.  相似文献   

9.
直立碳纳米管超级电容器的研究   总被引:1,自引:0,他引:1  
在石英玻璃基底上,以酞菁裂解法低压气相沉积制备大面积管径均匀、长度一致的直立碳纳米管.分别应用电解质溶液浸润、酸处理和循环伏安扫描等3种不同方法纯化活化该直立碳纳米管,并以活化后的碳纳米管作为原型超级电容器的电极.循环伏安扫描和交流阻抗测试表明,CV曲线呈近似矩形,交流阻抗最大相位角超过80°,该直立碳纳米管的比电容为16~32F/g,乃超级电容器理想的电极材料.  相似文献   

10.
基于碳纳米管的超级电容器研究进展   总被引:1,自引:1,他引:1  
综述了基于碳纳米管及其复合材料作超级电容器的电极材料的研究现状,通过对碳纳米管的改性或与其它材料复合,能有效地提高电容器的电容特性。总结了近几年来在开发超级电容器电极材料领域中对碳纳米管的活化和提高碳纳米管的分散性技术、碳纳米管与过渡金属氧化物复合材料、碳纳米管与导电聚合物复合材料以及碳纳米管与石墨烯复合材料研究的进展。  相似文献   

11.
Supercapacitors may be able to store more energy while maintaining fast charging times; however, they need low-cost and sophisticated electrode materials. Developing innovative and effective carbon-based electrode materials from naturally occurring chemical components is thus critical for supercapacitor development. In this context, biopolymer-derived porous carbon electrode materials for energy storage applications have gained considerable momentum due to their wide accessibility, high porosity, cost-effectiveness, low weight, biodegradability, and environmental friendliness. Moreover, the carbon structures derived from biopolymeric materials possess unique compositional, morphological, and electrochemical properties. This review aims to emphasize (i) the comprehensive concepts of biopolymers and supercapacitors to approach smart carbon-based materials for supercapacitors, (ii) synthesis strategies for biopolymer derived nanostructured carbons, (iii) recent advancements in biopolymer derived nanostructured carbons for supercapacitors, and (iv) challenges and future prospects from the viewpoint of green chemistry-based energy storage. This study is likely to be useful to the scientific community interested in the design of low-cost, efficient, and green electrode materials for supercapacitors as well as various types of electrocatalysis for energy production.  相似文献   

12.
以超级电容器的电极材料制备、性质研究及对组装的非对称超级电容器的性能研究为核心内容,提高超级电容器电化学性能为主要目的,采用水热合成法在碳布基底上合成三氧化钨/碳布和活化后的碳布为超级电容器的电极材料。采用SEM、XRD表征方法对制备的材料进行了形貌表征及物相分析;使用上海辰华电化学工作站对电极材料进行了循环伏安、恒流充放电、交流阻抗等电化学性能测试. 最终得到以三氧化钨/碳布为正极材料、活化后的碳布为负极材料组装成不对称柔性电容器,进行电化学测试,其电位窗口提高到0~1.6 V,电流密度61.9 mA·cm-2时,电容达到58.96 F·cm-2,功率密度0.48 W·cm-2时,能量密度为20.36 mWh·cm-2,同时在电流密度8 mA·cm-2时,循环3000次时表现出良好的循环性能,相较于对称型超级电容器,倍率性能更加优异.  相似文献   

13.
Harnessing new materials for developing high-energy storage devices set off research in the field of organic supercapacitors. Various attractive properties like high energy density, lower device weight, excellent cycling stability, and impressive pseudocapacitive nature make organic supercapacitors suitable candidates for high-end storage device applications. This review highlights the overall progress and future of organic supercapacitors. Sustainable energy production and storage depend on low cost, large supercapacitor packs with high energy density. Organic supercapacitors with high pseudocapacitance, lightweight form factor, and higher device potential are alternatives to other energy storage devices. There are many recent ongoing research works that focus on organic electrolytes along with the material aspect of organic supercapacitors. This review summarizes the current research status and the chemistry behind the storage mechanism in organic supercapacitors to overcome the challenges and achieve superior performance for future opportunities.  相似文献   

14.
Lithium-ion batteries (LIBs) have been widely employed in energy-storage applications owing to the relatively higher energy density and longer cycling life. However, they still need further improvement especially on the energy density to satisfy the increasing demands on the market. In this respect, the irreversible capacity loss (ICL) in the initial cycle is a critical challenge due to the lithium loss during the formation of solid electrolyte interphase (SEI) layer on the anode surface. The strategy of prelithiation was then proposed to compensate for the ICL in the anode and recover the energy density. Here, various methods of the prelithiation are summarized and classified according to the basic working mechanism. Further, considering the critical importance and promising progress of prelithiation in both fundamental research and real applications, this Review article is intended to discuss the considerations involved in the selection of prelithiation reagents/strategies and the electrochemical performance in full-cells. Moreover, insights are provided regarding the practical application prospects and the challenges that still need to be addressed.  相似文献   

15.
16.
Nanostructured α‐Fe2O3 with and without fluorine substitution were successfully obtained by a green route, that is, microwave irradiation. The hematite phase materials were evaluated as a high‐performance electrode material in a hybrid supercapacitor configuration along with activated carbon (AC). The presence of fluorine was confirmed through X‐ray photoelectron spectroscopy and transmission electron microscopy. Fluorine‐doped Fe2O3 (F‐Fe2O3) exhibits an enhanced pseudocapacitive performance compared to that of the bare hematite phase. The F‐Fe2O3/AC cell delivered a specific capacitance of 71 F g?1 at a current density of 2.25 A g?1 and retained approximately 90 % of its initial capacitance after 15 000 cycles. Furthermore, the F‐Fe2O3/AC cell showed a very high energy density of about 28 W h kg?1 compared to bare hematite phase (~9 W h kg?1). These data clearly reveal that the electrochemical performance of Fe2O3 can be improved by fluorine doping, thereby dramatically improving the energy density of the system.  相似文献   

17.
涂亮亮  贾春阳 《化学进展》2010,22(8):1610-1618
导电聚合物(聚苯胺,聚吡咯,聚噻吩)作为超级电容器电极材料的研究引起了人们广泛的兴趣,该类材料制备的超级电容器具有成本低、容量高、充放电时间短、环境友好和安全性高等优点。本文综述了近年来基于导电聚合物及其与无机材料(碳材料/金属氧化物材料)复合所得电极材料在超级电容器中的应用进展,指出具有纳米结构导电聚合物材料及导电聚合物与无机纳米材料的复合是超级电容器电极材料研究的重要发展方向。  相似文献   

18.
A flexible and wearable aqueous lithium‐ion battery is introduced based on spinel Li1.1Mn2O4 cathode and a carbon‐coated NASICON‐type LiTi2(PO4)3 anode (NASICON=sodium‐ion super ionic conductor). Energy densities of 63 Wh kg?1 or 124 mWh cm?3 and power densities of 3 275 W kg?1 or 11.1 W cm?3 can be obtained, which are seven times larger than the largest reported till now. The full cell can keep its capacity without significant loss under different bending states, which shows excellent flexibility. Furthermore, two such flexible cells in series with an operation voltage of 4 V can be compatible with current nonaqueous Li‐ion batteries. Therefore, such a flexible cell can potentially be put into practical applications for wearable electronics. In addition, a self‐chargeable unit is realized by integrating a single flexible aqueous Li‐ion battery with a commercial flexible solar cell, which may facilitate the long‐time outdoor operation of flexible and wearable electronic devices.  相似文献   

19.
The voltage of carbon‐based aqueous supercapacitors is limited by the water splitting reaction occurring in one electrode, generally resulting in the promising but unused potential range of the other electrode. Exploiting this unused potential range provides the possibility for further boosting their energy density. An efficient surface charge control strategy was developed to remarkably enhance the energy density of multiscale porous carbon (MSPC) based aqueous symmetric supercapacitors (SSCs) by controllably tuning the operating potential range of MSPC electrodes. The operating voltage of the SSCs with neutral electrolyte was significantly expanded from 1.4 V to 1.8 V after simple adjustment, enabling the energy density of the optimized SSCs reached twice as much as the original. Such a facile strategy was also demonstrated for the aqueous SSCs with acidic and alkaline electrolytes, and is believed to bring insight in the design of aqueous supercapacitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号