首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 218 毫秒
1.
以热解型Fe/N/C为代表的碳基非贵金属材料被认为是当前最具潜力替代铂的非贵金属氧还原催化剂,其综合性能的进一步突破,对于推动质子交换膜燃料电池商业化应用具有重要意义。对热解型Fe/N/C催化剂活性位结构的深入认识是实现催化剂高活性位密度和高稳定性理性设计的关键。本文总结了热解型Fe/N/C活性位的研究进展,重点介绍了非晶态铁氮配位活性中心、氮掺杂和碳缺陷三类活性位构型。由于热解型Fe/N/C是非均相的,结构非常复杂,导致在活性位认识上还存在诸多争议,本文总结阐述了活性位结构的不同观点。最后,我们展望了Fe/N/C催化剂活性位研究的未来方向。  相似文献   

2.
以2,6-二氨基嘌呤(Hdap)为配体合成了Fe-Nx/C氧还原催化剂, 并优化了热处理温度和Fe含量. 对催化剂组成和结构进行了表征, 分析了配体Hdap在热处理过程中随温度的变化情况, 通过循环伏安法和线性扫描伏安法测试了催化剂的氧还原催化性能. 结果表明, 热处理温度为800℃, Fe质量分数为5%时, 催化剂活性最高. 吡啶N含量较高的配体有利于提高催化剂的活性, 配体中含S元素会增加催化剂的活性.  相似文献   

3.
金属/氮/碳催化剂(M/N/C,M=Fe、Co等)是最有发展前景的非贵金属电催化剂之一,其性能依赖于催化剂表面的活性物种密度.通过常规的热解含氮前驱物与金属盐的方法制得的催化剂往往存在金属活性物种被包埋而不能有效利用的缺点.考虑到石墨相氮化碳(g-C3N4)富含类吡啶氮和亚纳米孔腔结构,将g-C3N4包覆在高导电性碳纳米笼(hCNC)表面,进而利用表层g-C3N4的配位和限域作用锚定大量Co2+离子,获得的Co/g-C3N4/hCNC复合物经热解后形成了活性位高度暴露、导电性好、孔结构丰富的Co/N/C催化剂.800℃热解得到的最优化催化剂在碱性介质中展现出优异氧还原活性,其起始电位(0.97 V)与商业Pt/C催化剂相当,且抗甲醇干扰性能和稳定性优异.此项研究提供了一种构建具有高度暴露活性位的M/N/C催化剂的有效策略.  相似文献   

4.
郑龙珍  陶堃  熊乐艳  叶丹  韩奎  纪忆 《化学学报》2012,70(22):2342-2346
以氧化石墨烯(GO)为碳载体, K3Fe(CN)6同时作为N源和Fe源, 经热处理后构建了新型Fe/N/C结构的氧气还原催化剂. 在热处理过程中, 氧化石墨烯上的官能团分解脱离形成活性中心, Fe元素和N元素的同时掺杂是通过氧化石墨烯与K3Fe(CN)6之间的相互作用而实现的. 通过傅立叶变换红外光谱(FTIR)和X射线光电子能谱(XPS)表征证明了这种非贵金属催化剂中N元素和Fe元素的成功掺杂, 在催化剂中N元素主要是以吡啶式氮、吡咯式氮和石墨式氮的形式存在, Fe(Ⅱ)和Fe(Ⅲ)则与其中的吡啶式氮配位形成Fe-Nx结构. 采用循环伏安法(CV)和旋转圆盘电极(RDE)技术, 研究其在碱性介质中对氧气还原反应(ORR)的电催化性能. 实验结果显示: Fe/N/C催化剂具有良好的ORR电催化活性, 在碱性溶液中的起始电位为-0.15 V, 同时有着良好的稳定性和抗甲醇性能.  相似文献   

5.
采用改性沉积-沉淀法制备了系列低温水煤气变换Au/Fe2O3催化剂, 发现经300 ℃焙烧的样品具有较好的催化活性和稳定性. 并运用N2物理吸附、原位X 射线粉末衍射(in situ XRD)、程序升温还原(H2-TPR)和X射线光电子能谱(XPS)等技术, 探讨焙烧温度对催化剂性能的影响机制, 同时对样品的失活原因进行了分析. 结果表明, 催化剂性能与焙烧温度引起的金和载体氧化铁的相互作用以及载体还原性质的变化密切相关. XPS表征结果说明, 尽管反应后在催化剂表面有碳酸盐或类碳酸盐物种生成, 但半定量分析表明这些物种的形成不是催化剂失活的主要原因;根据在低温水煤气变换反应过程中Au/Fe2O3催化剂的比表面积明显下降, 载体的结晶度也明显提高, 推断Au/Fe2O3催化剂载体的结构性质的变化才是其失活的主要原因.  相似文献   

6.
制备了钴卟啉负载碳黑催化剂(CoTMPP/BP2000)用于燃料电池阴极氧还原反应. 利用循环伏安法研究了200~900 ℃热处理温度对催化性能的影响. 研究结果表明, 热处理能够提高CoTMPP/BP2000的催化活性, 热处理温度为900 ℃时, 催化剂的氧还原能力最好. 利用紫外-可见光谱、透射电镜、红外光谱、热重分析及X射线光电子能谱等手段研究了热处理温度对催化剂结构的影响. 结果表明, 热处理改变了催化剂的活性中心结构, 400 ℃以上热处理使催化剂中钴卟啉环的结构坍塌, Co—N4键断裂; 900 ℃高温下形成了稳定的Co—Nx—C结构, 新的活性位使催化剂的氧还原能力得到提高.  相似文献   

7.
采用改性沉积-沉淀法制备了系列低温水煤气变换Au/Fe2O3催化剂,发现经300℃焙烧的样品具有较好的催化活性和稳定性.并运用N2物理吸附、原位X射线粉末衍射(in situ XRD)、程序升温还原(H2-TPR)和X射线光电子能谱(XPS)等技术,探讨焙烧温度对催化剂性能的影响机制,同时对样品的失活原因进行了分析.结果表明,催化剂性能与焙烧温度引起的金和载体氧化铁的相互作用以及载体还原性质的变化密切相关.XPS表征结果说明,尽管反应后在催化剂表面有碳酸盐或类碳酸盐物种生成,但半定量分析表明这些物种的形成不是催化剂失活的主要原因;根据在低温水煤气变换反应过程中Au/Fe2O3催化剂的比表面积明显下降,载体的结晶度也明显提高,推断Au/Fe2O3催化剂载体的结构性质的变化才是其失活的主要原因.  相似文献   

8.
燃料电池具有高效、低排放等优势,非常有希望作为未来电动汽车的能源转化装置.目前,燃料电池的商业化受制于昂贵的铂基催化剂,特别是动力学迟缓的阴极氧还原反应(ORR)铂催化剂. Fe/N/C被认为是最有潜力的ORR非贵金属催化剂,但其活性仍远低于Pt催化剂,必须依靠增加载量来弥补其与Pt催化剂的活性差距.然而,较厚的催化层(~100mm)会降低阴极传质速率.因此,改善Fe/N/C阴极的传质是提高电池性能的重要途径.
  本文选择高N含量的2-氨基苯并咪唑(ABI)为氮源,通过水热聚合包覆在碳黑表面,然后掺入FeCl3,经高温热解/酸洗制备了Fe/N/C-ABI催化剂,并与基于间苯二胺的微孔型Fe/N/C催化剂(Fe/N/C-PmPDA)进行比较. Ar等温吸附-脱附结果表明, Fe/N/C-ABI催化剂具有较高的比表面积(662 m2/g)和丰富的双级孔结构(微孔和介孔);透射电镜表征显示Fe/N/C-ABI催化剂具有中空结构,介孔孔径大约为10–25 nm.而Fe/N/C-PmPDA催化剂具有相当的比表面积(656 m2/g),但以微孔为主,基本不含介孔.旋转环圆盘电极(RRDE)测试表明,在0.1 mol/L H2SO4溶液中, Fe/N/C-ABI催化剂的起始还原电位为0.92 V,在0.8 V电位下质量电流密度可达9.21 A/g;而Fe/N/C-PmPDA催化剂具有相近的起始电位,但具有更高的催化活性,质量电流密度为13.4 A/g.氢氧燃料电池(PEMFC)系统测试结果表明, Fe/N/C-ABI催化剂在1个背压和80oC测试条件下的最大功率密度达710 mW/cm2,高于Fe/N/C-PmPDA催化剂(616 mW/cm2).燃料电池与RRDE测试活性顺序的差异归结于Fe/N/C-ABI的中空球状结构. PEMFC工作时阴极会产生大量的水,很容易堵塞氧气传输通道. Fe/N/C-ABI的介孔结构可以作为水的产生和排除的缓存空间,也有利于提高O2传质,从而提高燃料电池性能.本文为具有高传质速率的Fe/N/C催化剂研制提供了一种新思路.  相似文献   

9.
向Fe/N/C非贵金属催化剂中再引入S掺杂是进一步提高其氧还原催化活性的有效方法。为了探究活性提高的原因,本文以三聚氰胺-甲醛树脂为前驱体,氯化钙为模板,氯化铁为铁源,通过添加硫氰化钾(KSCN)来控制热解催化剂的S掺杂量。通过对比分析催化剂的物化性质,结合密度泛函理论(DFT)计算,分析S掺杂促进Fe/N/C催化剂氧还原活性的原因。透射电子显微镜(TEM)和N_2吸脱附等温线测试结果表明,S元素可抑制含铁纳米粒子的形成,促使形成多孔碳结构,提高比表面积。X射线光电子能谱(XPS)结果表明,适量S前驱体可实现较高的S掺杂含量,得到最优的活性,过量的S反而会导致Fe和S的掺杂量同时降低,影响活性。DFT计算结果表明在Fe-N_4大环中引入S掺杂,可增强O_2分子和中间体OOH与Fe-N_4结构中的Fe的相互作用,促进形成Fe―O键,从而导致O―O键的键能显著降低,为后续反应O―O键的断裂提供可能,促进ORR反应的进行。  相似文献   

10.
 研究了以异丙苯过氧化氢为氧化剂选择氧化丙烯制环氧丙烷的 Ti/HMS 催化剂的失活原因. 采用 XRD (X 射线衍射), FT-IR (傅里叶变换红外光谱), UV-Vis (紫外-可见光谱) 和 TG (热重分析) 等技术表征了催化剂失活前后的结构和化学组成. 结果表明, 催化剂的失活主要是由于反应过程中所产生的重组分在催化剂表面吸附, 覆盖了活性中心所致; 并不是由于四配位的活性钛物种转化为六配位、八配位或者锐钛矿 TiO2 所致. 采用热异丙苯溶剂洗涤的方法可以部分恢复失活催化剂的活性, 但不能恢复到新鲜催化剂的水平; 采用低温烧炭方法能够使催化剂的活性恢复到新鲜催化剂的水平. 因此, Ti/HMS 催化剂的失活是可逆的, 采用合适的再生方法可以恢复其催化活性.  相似文献   

11.
以高含氮量的2-氨基咪唑为氮源,三氯化铁为铁源,高比表面积的KJ600碳黑为载体,通过水热法制得氨基咪唑聚合物前驱体,再经二次高温热处理,制得石墨烯/碳黑复合材料. 透射电镜表征显示该材料为石墨烯纳米片与碳黑颗粒的复合结构. BET表征表明这是一种多孔结构,具有很高的比表面积(882 m2•g-1),这有利于暴露更多活性位点,并促进传质. XRD证实催化剂中存在石墨烯,且石墨烯结构是在第一次热处理过程中形成的. 电化学测试表明,该催化剂在酸性和碱性介质中都具有很高的氧还原电催化活性和低H2O2产率,并且在碱性介质中对甲醇小分子的抗毒化性能明显优于商业Pt/C催化剂,展示出在实际燃料电池系统中的应用潜力.  相似文献   

12.
A highly active nitrogen-doped catalyst with a unique red-blood-cell(RBC) like structure is reported for oxygen reduction reaction(ORR).The catalyst Fe,N-C@carbon-900 was prepared by pyrolysis of the polyaniline(PANl) and polystyrene(PS) composites with adsorption of ferric ion on the shell of sphere structure at 900℃.Fe,N-C@carbon-900 with a unique RBC-like structure provides plenty of catalytic sites combining the electrical conductivity of the carbon sphere with the catalytic activity of the nitrogen-doped layer.The four-electron reduction pathway is selected for the catalyst Fe,N-C@carbon-900.The catalyst exhibit the ORR E_(onset) at 0.87 V(potentials is versus to reversible hydrogen electrode(RHE)),E_(1/2) at 0.78 V and high diffusion-limiting current density(5.20mA/cm~2).Furthermore,this work indicates that both N and Fe accounted for high activity of the catalyst Fe,N-C@carbon-900 toward the oxygen reduction process.It is concluded that Fe and N exhibit synergistically promotion in the ORR activity for the catalyst Fe,N-C@carbon-900.We also provide a rational design of electrocatalysts with high ORR activity to further clarify the essential ORR sites of heteroatom doped carbon materials for fuel cells and metal-air battery applications.  相似文献   

13.
分别以三聚氰胺和三聚氰胺的聚合物为配体, 采用浸渍法合成了两种氧还原反应(ORR)催化剂Fe-N/C(1)和Fe-N/C(2). 通过X射线衍射光谱(XRD)、X射线光电子能谱(XPS)、透射电子显微镜(TEM)和电化学测试对催化剂的成分、形貌和电催化性能进行了表征. 结果表明, 以三聚氰胺聚合物为配体制备的Fe-N/C具有更高的ORR催化活性. 在高温热处理过程中, 催化剂表面能形成更多的石墨N活性点, 是其ORR性能提高的重要原因.  相似文献   

14.
Fe/N/C single-atom catalysts containing Fe−Nx sites prepared by pyrolysis are promising cathode materials for fuel cells and metal-air batteries due to their high oxygen reduction reaction (ORR) activities. We have developed iron complexes containing N2- or N3-chelating coordination structures with preorganized aromatic rings in a 1,12-diazatriphenylene framework tethering bromo substituents as precursors to precisely construct Fe−N4 sites in an Fe/N/C catalyst. One-step pyrolysis of the iron complex with carbon black forms atomically dispersed Fe−N4 sites without iron aggregates. X-ray absorption spectroscopy (XAS) and electrochemical measurements revealed that the iron complex with N3-coordination is more effectively converted to Fe−N4 sites catalyzing ORR with a TOF value of 0.21 e site−1 s−1 at 0.8 V vs. RHE. This indicates that the formation of Fe−N4 sites is controlled by precise tuning of the chemical structure of the iron complex precursor.  相似文献   

15.
A non-noble metal Fe/N/C catalyst is prepared by pyrolyzing the ball-milled mixture of graphitized carbon ribbon, iron precursor, and nitrogen precursor in ammonia. The Fe/N/C catalyst shows high ORR activity in alkaline solution, together with much improved stability compared with Pt/C catalyst. In the catalyst, FeN particles are covered by graphitic carbon layers. The activity is proposed to originate from the FeN and Fe/N/C sites. The stability is explained by the protecting effect of the carbon layers surrounding the FeN particles. The ORR mechanism on the Fe/N/C catalyst is proposed to be similar with Pt/C catalyst based on the Tafel plots. The Fe/N/C catalyst shows great potential in ORR in alkaline solution, while the performance in acid still needs improvement.  相似文献   

16.
杨智  沈亚云  周娥  魏成玲  秦好丽  田娟 《电化学》2020,26(1):130-135
采用热解法制备FeN/C催化剂,考察催化剂前驱体中氮含量对其氧还原活性的影响. 使用X射线衍射、比表面积和孔径分布测试、透射电子显微镜以及热重分析等方法对催化剂的结构、形貌及催化剂前驱体的热性质等进行表征,使用线性扫描伏安法对催化剂的氧还原活性进行测试. 结果表明,以1,10-菲啰啉为氮源,FeCl3为铁源,Black Pearl 2000为载体,催化剂前驱体中1,10-菲啰啉含量为20wt%,Fe含量为1wt %时,热处理制备所得催化剂粒子分布均匀,比表面积为824.48 m 2·g -1,平均孔隙为10.58 nm,表面的氮元素含量为0.31wt%;并具有最好的氧还原催化活性.催化剂前驱体中氮源含量在热解过程中导致催化剂的比表面积、孔径结构及表面氮元素含量的变化是影响催化剂活性的关键因素.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号