首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have investigated the polaron dynamics in n-doped InAs/GaAs self-assembled quantum dots by pump-probe midinfrared spectroscopy. A long T1 polaron decay time is measured at both low temperature and room temperature, with values around 70 and 37 ps, respectively. The decay time decreases for energies closer to the optical phonon energy. The relaxation is explained by the strong coupling for the electron-phonon interaction and by the finite lifetime of the optical phonons. We show that, even for a large detuning of 19 meV from the LO photon energy in GaAs, the carrier relaxation remains phonon assisted.  相似文献   

2.
We present the exact solution for the time evolution of the electron and phonon momentum distribution for a one-dimensional polaron model with alinear electronic energy dispersion. The electron momentum distribution is shown to obey aMarkovian quantum kinetic equation. Numerical results for the polaron model are compared to the corresponding exact results, when the negative momentum states are filled in the initial state. The presence of this Fermi sea modifies the dynamics except in the short time regime. The different, long time dynamics might show up in comparison of hot electron relaxation of undoped and doped semiconductors.  相似文献   

3.
We present the exact solution for the time evolution of the electron and phonon momentum distribution for a one-dimensional polaron model with alinear electronic energy dispersion. The electron momentum distribution is shown to obey aMarkovian quantum kinetic equation. Numerical results for the polaron model are compared to the corresponding exact results, when the negative momentum states are filled in the initial state. The presence of this Fermi sea modifies the dynamics except in the short time regime. The different, long time dynamics might show up in comparison of hot electron relaxation of undoped and doped semiconductors.  相似文献   

4.
A generalized expression is used on the basis of relaxation time approximation to facilitate calculation of lattice thermal conductivity of dielectric materials as well as skutterudite family consists of compounds of the form AB3. It is assumed that phonon scattering processes are independent and is represented by frequency dependent relaxation times. The contributions of normal three phonon scattering processes are included explicitly as redistribution of phonon momentum between two oscillation branches is considered. Magnitudes of relaxation times are estimated from the experimental data. The result for CoSb3 is in reasonably good agreement with the experimental result in the temperature range 1–1000°K. It is observed that redistribution of phonon momentum between two oscillation branches leads to a significant suppression of thermal conductivity maximum and it is observed that for unfilled skutterudite the main dominant mechanism at the thermal conductivity maximum is three phonon normal scattering process.  相似文献   

5.
The effect of normal phonon-phonon scattering processes on the thermal conductivity of silicon crystals with various degrees of isotope disorder is considered. The redistribution of phonon momentum in normal scattering processes is taken into account within each oscillation branch (the Callaway generalized model), as well as between different oscillation branches of the phonon spectrum (the Herring mechanism). The values of the parameters are obtained that determine the phonon momentum relaxation in anharmonic scattering processes. The contributions of the drift motion of longitudinal and transverse phonons to the thermal conductivity are analyzed. It is shown that the momentum redistribution between longitudinal and transverse phonons in the Herring relaxation model represents an efficient mechanism that limits the maximum thermal conductivity in isotopically pure silicon crystals. The dependence of the maximum thermal conductivity on the degree of isotope disorder is calculated. The maximum thermal conductivity of isotopically pure silicon crystals is estimated for two variants of phonon momentum relaxation in normal phonon-phonon scattering processes.  相似文献   

6.
We study a single polaron in the Su-Schrieffer-Heeger (SSH) model using four different techniques (three numerical and one analytical). Polarons show a smooth crossover from weak to strong coupling, as a function of the electron-phonon coupling strength λ, in all models where this coupling depends only on phonon momentum q. In the SSH model the coupling also depends on the electron momentum k; we find it has a sharp transition, at a critical coupling strength λ(c), between states with zero and nonzero momentum of the ground state. All other properties of the polaron are also singular at λ=λ(c). This result is representative of all polarons with coupling depending on k and q, and will have important experimental consequences (e.g., in angle-resolved photoemission spectroscopy and conductivity experiments).  相似文献   

7.
王启文  红兰 《物理学报》2012,61(1):17107-017107
在考虑Rashba自旋-轨道耦合的条件下, 采用二次幺正变换和变分方法研究了二维抛物量子点中由于电子与体纵光学声子的耦合作用形成的极化子在基态Zeeman分裂能级上的自旋弛豫过程.这一过程主要是通过吸收或发射一个形变势或压电声学声子完成.具体分析了强、弱耦合两种极限下极化子自旋弛豫率与外磁场、量子点半径、Landau因子参数、Rashba自旋轨道耦合参数的变化关系. 关键词: 自旋弛豫 极化子 Rashba自旋轨道耦合 量子点  相似文献   

8.
Here we present a theoretical analysis of the effect of inelastic electron scattering on spin-dependent transport characteristics (conductance, current–voltage dependence, magnetoresistance, shot noise spectrum, Fano factor) for magnetic nanojunction. Such device is composed of molecular quantum dot (with discrete energy levels) connected to ferromagnetic electrodes (treated within the wide-band approximation), where molecular vibrations are modeled as dispersionless phonons. Non-perturbative computational scheme, used in this work, is based on the Green's function theory within the framework of mapping technique (GFT–MT), which transforms the many-body electron–phonon interaction problem into a single-electron multi-channel scattering problem. The consequence of the localized electron–phonon coupling is polaron formation. It is shown that polaron shift and additional peaks in the transmission function completely change the shape of considered transport characteristics.  相似文献   

9.
多原子半无限晶体中表面极化子的内部激发态   总被引:1,自引:1,他引:0  
任保友  肖景林 《发光学报》2007,28(5):662-666
研究多原子半无限晶体中电子与表面光学(SO)声子耦合强,而与体纵光学(LO)声子耦合弱的极化子的激发态性质.采用线性组合算符和幺正变换方法导出与SO声子耦合强而与LO声子耦合弱情形下极化子的基态能量、第一内部激发态能量和激发能量.结果表明,多原子半无限晶体中与SO声子耦合强,而与LO声子耦合弱的极化子的基态能量、第一内部激发态能量不仅包含不同支LO声子和不同支SO声子与电子耦合的能量,而且也包含不同支SO声子之间相互作用贡献的附加能量.激发能量与体纵光学声子无关.  相似文献   

10.
We present a study of the magnetic field-dependent thermal transport in the spin S=1 chain material Ni(C(2)H(8)N(2))(2)NO(2)(ClO(4)) (NENP). The measured thermal conductivity is found to be very sensitive to the field-induced changes in the spin excitation spectrum. The magnetic contribution to the total heat conductivity is analyzed in terms of a quasiparticle model, and we obtain a temperature and momentum independent mean free path. This implies that the motion of quasiparticles is effectively three dimensional despite the tiny interchain coupling.  相似文献   

11.
The optical absorption of the Fr?hlich polaron model is obtained by an approximation-free diagrammatic Monte Carlo method and compared with two new approximate approaches that treat lattice relaxation effects in different ways. We show that: (i) a strong coupling expansion, based on the Franck-Condon principle, well describes the optical conductivity for large coupling strengths (alpha > 10); (ii) a memory function formalism with phonon broadened levels reproduces the optical response for weak coupling strengths (alpha < 6) taking the dynamic lattice relaxation into account. In the coupling regime 6 < alpha < 10, the optical conductivity is a rapidly changing superposition of both Franck-Condon and dynamic contributions.  相似文献   

12.
Theoretical formalism for DC‐field polaron dynamics is extended to the dynamics of a 1D Holstein polaron in an external AC electric field using multiple Davydov trial states. Effects of carrier–phonon coupling on detuned and resonant scenarios are investigated for both phase and nonzero phase. For slightly off‐resonant or detuned cases, a beat between the usual Bloch oscillations and an AC driving force results in super Bloch oscillations, that is, rescaled Bloch oscillations in both the spatial and the temporal dimension. Super Bloch oscillations are damped by carrier–phonon coupling. For resonant cases, if the carrier is created on two nearest‐neighboring sites, the carrier wave packet spreads with small‐amplitude oscillations. Adding carrier–phonon coupling localizes the carrier wave packet. If an initial broad Gaussian wave packet is adopted, the centroid of the carrier wave packet moves with a certain velocity and with its shape unchanged. Adding carrier–phonon coupling broadens the carrier wave packet and slows down the carrier movement. Our findings may help provide guiding principles on how to manipulate the dynamics of the super Bloch oscillations of carriers in semiconductor superlattice and optical lattices by modifying DC and AC field strengths, AC phases, and detuning parameters.  相似文献   

13.
We report independent measurements (between 20 and 200 mK) of the electronic specific heat C(e), the electron-phonon coupling G(e-ph), and the electron-phonon relaxation time tau(e-ph) (from 10(-2) to 10(-5) s) for NbxSi1-x Anderson insulator thin films. We show that the usual equation tau(e-ph) = C(e)/G(e-ph) holds only if the resistance is solely related to the electron temperature. We conclude that at sufficiently low temperatures variable range hopping transport is assisted by electron-electron interactions alone and is independent of the phonon distribution.  相似文献   

14.
The temperature dependence of the infrared free polaron absorption in polar semiconductors is investigated for all electron—LO phonon coupling. The spectrum shows a Drude-like background on which a structure due to an internal polaron excitation is superposed.  相似文献   

15.
We report heat dissipation times in semiconductor nanocrystals of CdSe. Specifically, a previously unresolved, subnanosecond decay component in the low-temperature photoluminescence decay dynamics exhibits longer decay lifetimes (tens to hundreds of picoseconds) for larger nanocrystals as well as a size-independent, ~25-meV spectral shift. We attribute the fast relaxation to transient phonon-mediated relaxation arising from nonequilibrium acoustic phonons. Following acoustic phonon dissipation, the dark exciton state recombines more slowly via LO-phonon assistance resulting in the observed spectral shift. The measured relaxation time scales agree with classical calculations of thermal diffusion, indicating that interfacial thermal conductivity does not limit thermal transport in these semiconductor nanocrystal dispersions.  相似文献   

16.
Dynamical relaxation process of one-dimensional polaron system weakly coupled with a thermal phonon field is theoretically investigated. In addition to the diffusion relaxation, we have found that there appears a new macroscopic quantum sound mode which stabilizes the wave packet of the quantum particle even under the random collision with the thermal phonon. This coherent sound mode is a new hydrodynamic mode obeying a macroscopic linear wave equation for the density of the particle, instead of wave function.  相似文献   

17.
鲍华 《物理学报》2013,62(18):186302-186302
用一种非简谐晶格动力学方法, 使用相互作用势作为惟一的输入参数, 准确地计算了固体氩的各个声子的频率和弛豫时间. 并将这些结果进一步和玻尔兹曼输运方程相结合, 预测了固体氩从10 K 到80 K 区间的热导率, 并得到了与实验值非常符合的结果. 分析了运用非简谐晶格动力学方法进行数值计算过程中的各个相关的计算参数, 包括布里渊区中倒格子矢量的选取, δ 函数的展宽的选择等对热导率和声子弛豫时间预测结果的影响. 通过对各个声子模式对热导率贡献的分析, 发现随着温度升高, 高频声子对于热导率的贡献率也逐渐变大, 结果和理论预测完全一致. 关键词: 热导率 固体氩 非简谐晶格动力学 声子  相似文献   

18.
We have study the simultaneous effect of Rashba and Dresselhaus spin–orbit interactions on the polaron properties in wurtzite semiconductor quantum wells. The linear and cubic contributions of the bulk Dresselhaus spin–orbit coupling and the effects of phonon confinement on electron–optical-phonon interaction Hamiltonians are taken into account. We have found analytical solutions for the polaron energies as well as polaron effective mass within the range of validity of perturbation theory. It is shown that the polaron energy and effective mass correction are both significantly enhanced by the spin–orbit coupling. Wave number dependent phonon contribution on the electron energy has minima and varies differently of the spin-up and spin-down states. Polaron self-energy due to interface optical phonon modes has larger values than of the confined optical phonon modes ones. The polaron effective mass exhibits anisotropy and the contribution of the Dresselhaus spin–orbit coupling term on the polaron effective mass is dominated by Rashba one.  相似文献   

19.
Multiphonon inelastic light scattering has been investigated in the magnetically ordering Eu and in the diamagnetic Yb monochalocogenides. All aspects of this scattering suggest that the multi-phonon lines results from recombination during time resolved relaxation ot the excited “hot” electron. The multiphonon scattering in these compounds is therefore interpreted by a two-step process of absorption followed by emission (hot luminescence). The observation of zone-center and zone-boundary multiphonon scattering is related to the electron-phonon coupling which is dependent on the kinetic energy of the excited photo-electron. Hence, with excitation into the bottom of the conduction band the coupling to the phonon system is dominated by the Fröhlich polaron concept, leading to zone-center LO scattering, whereas at higher excitation energies the electron-phonon coupling is no longer selective and is dependent primarily on the LO phonon density of states. The relaxation process and the electron-phonon coupling are strongly dependent on magnetic order. However, by comparison of the Eu monochalcogenides with the corresponding Yb compounds it is evident that the general phenomenon of multiphonon scattering in these compounds is independent of a spin system and is determined alone by the unique band structure.  相似文献   

20.
The thermal conductivity of free-standing silicon nanowires (SiNWs) with diameters from 1-3?nm has been studied by using the one-dimensional Boltzmann's transport equation. Our model explicitly accounts for the Umklapp scattering process and electron-phonon coupling effects in the calculation of the phonon scattering rates. The role of the electron-phonon coupling in the heat transport is relatively small for large silicon nanowires. It is found that the effect of the electron-phonon coupling on the thermal conduction is enhanced as the diameter of the silicon nanowires decreases. Electrons in the conduction band scatter low-energy phonons effectively where surface modes dominate, resulting in a smaller thermal conductivity. Neglecting the electron-phonon coupling leads to overestimation of the thermal transport for ultra-thin SiNWs. The detailed study of the phonon density of states from the surface atoms and central atoms shows a better understanding of the nontrivial size dependence of the heat transport in silicon nanowire.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号